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early 1900s, while working as a patent clerk. It was as a professor 

at the University of Berlin that he finished the general theory of 

relativity in 1915–17. Later, Einstein left Germany and came to 

the United States to join the Institute for Advanced Study at 

Princeton. In his later years he became more interested in social is-

sues and penned several books, including About Zionism, on the 

state of Israel. He died in 1955 at the age of seventy-six. 

Educated as a physicist at Cambridge University, nigel calder 
began his full-time writing career on the original staff of New Sci-

entist magazine, and later became its editor. In 1966 he left that 
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Introduction 

“What really interests me is whether God had any choice in the 

creation of the world.” At the centenary of Albert Einstein’s 

birth, in 1979, I scripted that comment of his into a TV docu-

mentary about relativity. Some broadcasters expunged it from 

the soundtrack because they thought it was blasphemous. In 

truth it was a reverential remark, and the question remains a 

shrewd one. 

The relativity theories explained by Einstein in this book sup-

ply some of the basic rules that any properly functioning uni-

verse must obey. They make sure that atoms and natural forces 

will behave in the same way anywhere, across the great oceans 

of space and time. A supplementary rule helps to explain how 

stars and life can go on running for billions of years. 

When all the rules are known, will it turn out that only one 

possible kind of universe can be both self-consistent and con-

genial for life? For any young would-be Einstein of today, the 

question is still on the table. And as the maestro commented 

on another occasion, to persevere with such difficult trains of 

thought requires feelings like those of “a religious person or a 

lover.” 

For you, the inquisitive reader, a sense of trying to read the 

mind of God—or to chat up Mother Nature, if you prefer—is 

an encouragement to accompany Einstein through the forest of 

tricky ideas contained in this slim volume. You will bear with 

him even when, from time to time, he uses a little high school 

mathematics to consolidate the reasoning. The payoff is worth 

the mental effort. 

Addressing you person-to-person, Einstein certainly wants 
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you to join him in his intellectual adventure. Gratuitous mysti-

fication and hero worship, which sometimes contaminate other 

people’s accounts of relativity, are absent here. As a writer, Ein-

stein takes great pains to find examples and analogies to explain 

his points, but he pursues no prizes for his prose. He shares the 

opinion of the physicist Ludwig Boltzmann who said that, 

“Matters of elegance ought to be left to the tailor and to the 

cobbler.” 

When he wrote this book in German in 1916, Einstein’s name 

was scarcely known outside the physics institutes. He had just 

completed his masterpiece, the general theory of relativity. It pro-

vided a brand-new theory of gravity and it promised a new per-

spective on the cosmos as a whole. He set out at once to share his 

excitement with as wide a public as possible. But World War I 

was raging at the time and English-speaking countries scorned all 

things German. 

After the war, two British expeditions to the South Atlantic 

observed the total eclipse of the sun in May 1919. The as-

tronomers photographed stars shifting in the sky, in a way that 

was said to support the Berlin professor’s outlandish ideas. 

Newton’s law of gravity was apparently out of date. Announced 

in London on November 6, 1919, the news made Einstein a 

celebrity overnight. 

“The typhoon of publicity crossed the Atlantic,” Ernest 

Rutherford noted. As the discoverer of the atomic nucleus, he 

was a rival for fame. Robert W. Lawson, a British physicist who 

had polished his knowledge of German while a prisoner of war 

in Austria, translated this book into English. He secured Ein-

stein’s blessing for the book’s publication in 1920, and the eclipse 

results were included in an appendix. 

So why not engage in a little time travel? Imagine that it’s 

the aftermath of World War I. The usual method of long-range 

travel is still by railroad train. The U.S. government has pro-

hibited alcohol, and bootleggers are admiring the newly devel-

oped Thompson submachine gun. Al Jolson and his song 

“Swanee” are all the rage. And that German chap’s account 

of how he upstaged the great Isaac Newton is here in your 

hands. 
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EINSTEIN’S FIRST THIRTY-SEVEN YEARS 

The transition from relative obscurity to a prominence un-

matched by movie stars, signaled by the translation of this book, 

is also a moment to reflect on Einstein’s life till then. Born in 

Ulm in Germany in 1879, Albert was the son of an entrepre-

neurial electrician (seldom successful) and a musically-minded 

mother. In the following year the family moved to Munich. Al-

bert’s budding brain was enthused by a magnet given to him at 

the age of five, and by a book on Euclid’s “holy geometry” as he 

called it, when he was twelve. 

From sixteen onward, Einstein studied in Switzerland. He was 

brilliant and negligent by turns and often preoccupied with his 

own thoughts. In 1900, aged twenty-one, he obtained a diploma 

as a science teacher from the Federal Institute of Technology in 

Zurich, but then had great difficulty securing a job. His private 

life was in a mess. Fellow student Mileva Maric was pregnant 

with his child, Einstein’s parents opposed a marriage, and any-

way he was broke. 

Not until the summer of 1902 did Einstein secure a permanent 

job, as a technical officer at the Swiss Patent Office. He married 

Mileva, and they settled in Bern. Their first child disappeared 

mysteriously—she was presumably adopted and/or died—but in 

1904 the first of two sons was born. 

After a solid day’s work at the office, evaluating all sorts of 

inventions, Einstein would spend his spare time on fundamen-

tal physics, working at the table in the family apartment. The 

resulting papers went to the Annalen der Physik, which toler-

antly published his ideas. He also wrote many review articles 

for that journal, on other people’s physics. 

Einstein was neither a competent experimenter nor a high-

powered mathematician. His intuition about scientific concepts 

was unequaled, and when logic was on his side he would stick 

his neck far out, even when his conclusions ran counter to the 

received wisdom. A reinterpretation of the photoelectric effect 

was his first spectacular contribution, proving that light can be-

have as if it consists of particles, not waves. 
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That was the subject of a paper written in March 1905, 

shortly before his twenty-sixth birthday. During the next few 

weeks Einstein completed two groundbreaking papers on mo-

lecular physics. In May he solved a puzzle about the speed of 

light that had taunted him for years, and before the end of June 

he had sent his first paper on relativity to Annalen der Physik. 

Three months later he followed it with a related paper on the 

equivalence of energy and mass. 

No wonder 1905 is called, in retrospect, Einstein’s miracle 

year. Yet the academic world was extremely slow to react. Not 

until 1909 was he able to give up his job at the Patent Office, on 

becoming an assistant professor at Zurich University. There-

after his career took off, with a quick succession of posts in 

other universities culminating in a very prestigious appointment 

in Berlin, where he settled in 1914. 

All the while he was struggling to generalize his ideas about 

relativity. The special theory of 1905 dealt with conflicting 

views of the world that result from relative movements at a 

steady speed. If he could extend it to accelerated motions, a 

new theory of gravity would be in his grasp. He had the right 

ideas from 1907 onward, but the mathematics was so tricky 

that the general theory of relativity was not perfected until 1915. 

Just as he was beginning to apply it to the overall nature of the 

universe, he spared the time needed to write the present book. 

He was then age thirty-seven. 

SPACE, TIME, AND LIGHT ALONG 

A RAILROAD 

Einstein starts his book by asking whether Euclid’s geometry is 

true. The Greek compendium about how lines and shapes relate 

to one another, on a flat surface, has been the bedrock of practi-

cal mathematics for two thousand years. Yet it is definitely cor-

rect only in abstract logic. In the real world, so Einstein warns 

us, its truth may turn out to be limited. 

This is a distant, ranging shot, and Section 1 may puzzle some 
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readers, because Einstein does not return to Euclid’s vulnerability 

until halfway through the book. Its early appearance means that 

the author wants to shock us into thinking about things in his 

way. Euclid not necessarily correct? That was fighting talk in 

1920. 

Nowadays scientists can directly test geometry across the 

solar system, because radar echoes from planets, and signals 

to and from spacecraft, can measure relative distances. The old 

rules about triangles, for example, don’t work exactly. Rather 

than complain that Euclid was wrong, the scientists now prefer 

to say that the empty space in the solar system is not perfectly 

“flat” in Euclid’s sense. The way gravity deforms space and 

time is what general relativity is all about. 

But first Einstein leads us into special relativity and the ef-

fects of motion—special because it excludes accelerated move-

ment. In Sections 2 to 4 he erects the traditional scaffolding 

of the physical world, which his theories are going to shake, 

namely the system of coordinates used for pinpointing events 

and tracing movements. There are three dimensions of space 

x, y, and z (meaning left-right, forward-back, and up-down) 

and one dimension of time t. 

Events can look very different to onlookers in different situa-

tions, especially if they are moving relative to one another. In 

Section 3, Einstein introduces the railroad (the “railway” to the 

British translator) that sets the scene for his reasoning for many 

pages that follow. The first example of different viewpoints 

comes when I drop a stone from the window of a moving train. 

I see the stone go straight down from my hand to the ground. If 

you watch from the side of the track, you’ll see it following a 

curved (parabolic) path, because the stone inherits some side-

ways motion from the train. 

In Section 4, Einstein equips the observers in the train and by 

the track with clocks, so that each has a complete coordinate 

system—a personal frame of reference in space and time. So far 

so obvious, but in Section 5 Einstein gives a preliminary hint 

that the world will get out of joint when light comes into the 

story. That is the meaning of his reference to developments in 

“electrodynamics and optics.” 
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Approaching the tricky bit gradually, Einstein reasons that 

the laws of nature ought not to depend on who is watching. A 

raven flying in a straight line will appear to be going straight 

to an observer in a moving train, even though he’ll reckon the 

bird’s course and speed differently from a trackside observer. 

Similarly the laws of nature observed on the earth don’t change 

between winter and summer, even though our planet reverses its 

direction of travel around the sun as it hurries along in its orbit 

at 30 kilometers per second. A century after Einstein formu-

lated these ideas, the absence of any seasonal variation in phys-

ical laws has been checked to the highest precision for which 

you could ever wish. 

Next, Einstein turns to the way speeds can be combined. In 

Section 6 a man walks forward along a moving train. An on-

looker beside the track may reckon how fast the man is advanc-

ing by simply adding his speed of walking to the train’s velocity, 

but that will turn out to be an oversimplification. The first clue 

comes in Section 7, when Einstein imagines a beam of light 

being sent along a railroad embankment in the same direction 

as a train is traveling. He asks how fast the light goes in relation 

to the train. 

“Classical” ideas tempt you to think that the light must be 

going more slowly as judged from the train, because you should 

subtract the train’s speed. Not so, says Einstein. If a traveler on 

the train could measure the speed of the beam of light for him-

self, the result would be exactly the same as the speed of the 

same beam measured by someone stationary on the ground. 

THE CONSTANT SPEED OF LIGHT 

How does Einstein know that the movement of a source of 

light, or of the detector that registers its arrival, has no effect 

on the speed of light as measured by any observer? When he 

developed the special theory of relativity in 1905, his convic-

tion about this crucial point depended on his intuition and on 

the theories of a Dutch physicist, Hendrik Lorentz. But in 

1913, before he wrote this book, Einstein was rewarded 
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with strong supporting evidence when a Dutch astronomer, 

Willem de Sitter, considered pairs of stars that orbit around 

each other. 

Sometimes a star swings towards the earth, as it circles its 

partner, and sometimes it’s receding on the other side of its 

partner. These phases of its orbit are distinguishable by shifts in 

frequency of the starlight, and they follow at regular intervals. 

If the light traveled faster when emitted by the star approaching 

the earth, it would overtake the light from the previous retreat-

ing phase and smear out the alternations. As astronomers can 

easily distinguish the comings and goings, de Sitter reasoned 

that the constancy of the speed of light was confirmed. 

Astronomy at invisible frequencies, which travel at the same 

speed as visible light, has refined de Sitter’s test. An X-ray star 

in another galaxy, the Small Magellanic Cloud, is orbiting 

around an unseen companion. It lies so far away that the slight-

est discrepancy in the light speed, due to the star’s own speed, 

would be detectable. 

Gamma-ray bursts come from stupendous explosions that 

occur almost out to the limits of the observable universe. Even 

after taking billions of years to reach us, some bursts last for 

only a split second. That means there can be no difference at all 

in the speeds of emission from rapidly moving parts of the vio-

lently erupting source. The brevity of gamma-ray bursts now 

makes the constancy of light speed in empty space one of the 

surest facts in the whole of science. 

With this hindsight, Einstein’s conviction is correct. But the 

puzzle illustrated by the railroad train and the relative speed of 

the light beam “has plunged the conscientiously thoughtful 

physicist into the greatest intellectual difficulties.” The special 

theory of relativity is promised as the solution. 

TIME BECOMES SLIPPERY 

Two lightning flashes are said to strike the railroad embankment 

at the same moment at different places, and Einstein spends sev-

eral pages fretting about the meaning of “simultaneous” (Sections 
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8 and 9). After a mock dialogue with the reader, who suppos-

edly defends old-fashioned thinking about the idea of time in 

physics, Einstein offers an exact definition. The lightning strokes 

are simultaneous if their light rays meet at the midpoint on the 

embankment between the places where they strike. 

But from the point of view of a rider on a moving train, who 

happens to be midway between the points of impact when the 

lightning strikes, the flashes cannot be simultaneous. This ob-

server will see the flash up ahead slightly before the one behind, 

because the train has moved him forward to meet its approach-

ing rays. 

Once simultaneity becomes only a relative concept, time it-

self goes haywire. What the observer on the embankment con-

siders to be one second is not one second for the person on the 

train. As a result (in Section 10) the speed of a person walking 

forward along the train, as judged from the embankment, turns 

out to be different from the speed of walking judged on the 

train itself. And the length of the train itself will appear differ-

ent too. 

To make these crazy-seeming propositions precise, Einstein 

brings in a mathematical device called the Lorentz transforma-

tion, named after the Dutch physicist mentioned earlier. Don’t 

worry if you can’t follow it all. Section 11 (reinforced by Ap-

pendix 1) explains why the same beam of light has the same 

speed whether judged by a stationary or a moving observer. 

Time runs more slowly for the moving observer, to exactly the 

extent needed to secure the constancy of light speed. 

Similar mathematics in Section 12 tells you why no ordinary 

object could ever travel faster than light. It also shows that a 

measuring rod moving past you will appear shorter than when 

it is at rest; hence, the remark about the length of the train. Ein-

stein’s way of putting it suggests a squeezing. In a more modern 

gloss, the rod, or the train, appears to be slightly rotated away 

from you as it passes, and so you see it foreshortened to the ex-

tent predicted by the formula. 

Einstein then returns to the question of how velocities are to 

be added together (Section 13). When this situation cropped up 

earlier, with a person walking forward along a moving train, 
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the simpleminded answer was to add the man’s speed to the 

train’s speed. But in relativity the combined speed as gauged by 

a stationary watcher has to be reduced a little. 

With some satisfaction, Einstein revisits an experiment first 

devised by a French physicist, Armand Fizeau, in 1851. By mea-

suring the speed of light in water flowing down a tube, it unwit-

tingly tested Einstein’s formula for adding velocities. Repeated 

by Pieter Zeeman (yet another Dutchman, and a colleague of 

Lorentz), the experiment confirmed the formula’s accuracy to 

within 1 percent. 

MASS AND ENERGY 

When this book was written, practicable speeds of motion were 

too slow, and clocks and rulers too imprecise, to test many pre-

dictions of special relativity directly. Undismayed, Einstein went 

on to make some sweeping inferences from his theory. His 

assertion, in Section 14, that any general law of nature must be 

consistent with special relativity, reconfirms his early require-

ment that the laws of nature cannot depend on who is looking. 

Einstein’s own most famous law is that mass and energy are 

equivalent. In Section 15 he introduces the idea by way of an-

other remarkable prediction of special relativity, namely that 

the mass of a body increases when it travels at high speed. In 

classical physics it gains in energy of motion. In relativity that 

kinetic energy makes itself felt as additional mass. 

Radiant energy absorbed by a body also increases its mass. 

Indeed the total mass becomes a measure of its total energy. But 

in this reckoning the body starts with inherent energy even 

when at rest. It is a huge amount, given by the body’s rest mass 

multiplied by the square of the speed of light, or E � mc2. 

Concentrations of energy available in 1916 were too small in 

relation to experimental masses for this equivalence of mass and 

energy to be tested. And in Section 16, when Einstein trawls for 

evidence in support of special relativity as a whole, the haul is 

meager—just small deviations from classical expectations in 

experiments with electrons, and a favorable gloss that he can put 
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on the failure to detect any difference in the speed of light in two 

directions at right angles, in a nineteenth-century experiment. 

Modern particle accelerators confirm Einstein’s predictions 

more directly. They prolong the life of unstable subatomic 

particles by achieving speeds that stretch time for them. The 

masses of accelerated particles increase to the point where new 

matter can be created from them. E � mc2 accounts for the long-

lasting power of the sun and the stars, and appears as the nu-

clear energy that power engineers and bomb-makers have learned 

how to tap. 

To trace all the consequences of special relativity now verified 

by scientists would be to recapitulate much of the physics and 

astronomy of the past one hundred years. Perhaps the crowning 

glory is antimatter, predicted by Paul Dirac in England when he 

applied special relativity to the theory of subatomic particles. 

Antimatter is now known to shower down from the sky above 

us, and when a particle meets its antiparticle, both of them dis-

appear in a burst of radiant energy, exactly in accordance with 

E � mc2. 

ONWARD TO GENERAL RELATIVITY 

“The non-mathematician is seized by a mysterious shuddering 

when he hears of ‘four-dimensional’ things, by a feeling not un-

like that awakened by thoughts of the occult. And yet there is 

no more common-place statement than that the world in which 

we live is a four-dimensional space-time continuum.” 

Einstein makes this remark at the start of Section 17, which 

is a preamble about geometry for the transition from special rel-

ativity to general relativity. Figuring prominently is the mathe-

matician Hermann Minkowski, who had called Einstein “a lazy 

dog” when teaching him in Zurich. Minkowski invented a math-

ematical trick that treats time as if it were just an extra di-

mension of space. Appendix 2 has a little more on this subject. 

Without this method, the juggling with space-time whereby 

Einstein revolutionized the theory of gravity would have been 

much more difficult. 
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The different meanings of special and general relativity ap-

pear in Section 18. The democratic principle that Einstein is 

pursuing requires the laws of nature to remain the same regard-

less of how the observer is moving. While the special theory 

compares different views of the world due to uniform motion, 

as in the railroad train moving steadily along the track, the gen-

eral theory removes that restriction and allows for all kinds of 

movement, including acceleration and rotation. 

Some puzzles about gravity are set out in Section 19. What-

ever the “intermediary medium” is, which pulls a stone down 

when we drop it, it acts equally on any other object. Everything 

falls with the same acceleration, if there’s no air resistance. And 

isn’t it odd that the force of gravity acting on a body is propor-

tional to its mass—exactly the same quality that crops up when 

you gauge the body’s resistance to acceleration, its inertia? These 

features find an explanation in Section 20, when gravity is seen 

to be very like any other accelerating system. 

Einstein invites us to visualize a man living in a big chest 

that’s drifting in empty space. He must tie himself to the floor if 

he is not to float about. The modern reader has seen videos of 

astronauts drifting weightlessly in their spaceships, but Einstein 

has to picture it for himself. 

Unable to invoke a space rocket to propel the box, he imag-

ines a “being” pulling on a rope attached to the lid of the chest 

and imparting a steady acceleration. The man in the chest can 

then think himself at home on the earth. He no longer tends to 

float, and any object he releases will fall to the floor. The steady 

acceleration through empty space will feel to him just like grav-

ity. What’s more, the simulation fully accounts for the equal ef-

fect of gravity on all objects, and for the equality of inertial and 

gravitational mass. 

A similar situation prevails for a person on a train when the 

brakes are applied hard. He can say, if he wishes, that he is 

jerked forward by a short-lived gravitational field. It also slows 

down the embankment (and the planet in general) that were 

rushing past him while he sat stationary in his own frame of 

reference. By this time the reader may think that the reasoning 

is quaint, but in Section 21 it’s clear that Einstein is in earnest. 
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He is simply stressing that, in general relativity, no point of 

view can take preference over any other. 

GRAVITY BENDS LIGHT 

The similarity between gravity and any other acceleration 

means that light must be affected by gravity like any other sub-

stance. This crucial ingredient of Einstein’s theory first appears 

in Section 22. There he predicts that the light from a star graz-

ing the sun will be deflected, so that it will change its apparent 

position in the sky by 1.7 seconds of arc (roughly one two-

thousandths of a degree). At the time of an eclipse, he says, stars 

seen beyond the sun ought to appear shifted outwards from the 

sun to that sort of extent, compared with their normal positions 

in the sky. This was the prediction that made Einstein famous. 

He was doubly lucky. When wrestling with his early ideas 

about general relativity, in 1911, he published a wrong answer 

for the deflection of starlight—half the correct result. The out-

break of World War I prevented astronomers from testing Ein-

stein’s prediction at the total eclipse of 1914, before he came up 

with the right number in 1915. 

The second stroke of luck was that the British astronomer 

Arthur Eddington, who led the effort to test it at the eclipse of 

1919, was predisposed to believe Einstein’s theory. Looking for 

star-shifts of less than a millimeter on the photographic plates, 

Eddington’s team put aside several plates that gave “wrong” re-

sults, and picked ’n’ mixed the rest until the average was about 

right (see Appendix 3b). It was pretty sloppy science, yet Ed-

dington let the message ring out around the world: “Newton’s 

theory of gravity is dead—long live Einstein’s!” 

Fortunately, light bending to the extent required by general 

relativity has been amply verified since then. Radio waves are 

invisible light, and astronomers used widely spaced radio tele-

scopes in accurate observations of Quasar 3C279, which regularly 

passes behind the sun. A European star-mapping satellite called 

Hipparcos (1989–93) detected the deflection of starlight even 

from stars lying far from the sun’s direction in the sky. Hipparcos 
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scientists were able to verify Einstein’s theory to an accuracy of 
1– 
10 

of 1 percent. 

Gravitational lenses lying far away in the universe give an up-

to-date demonstration of light bending in the Einsteinian fash-

ion. The gravity of a cluster of galaxies, and of invisible dark 

matter associated with it, acts as an untidy magnifier. It en-

hances the view of even more distant galaxies by magnifying 

them, albeit with distortion and multiple images. 

COMING CLEAN ABOUT 

THE SPEED OF LIGHT 

An ordinary lens works by delaying the light passing through it, 

because light travels more slowly through glass than through 

air. The same is true of gravitational lenses. Einstein comments 

in Section 22 that, against all expectations from special relativ-

ity, the deflection of light by gravity implies a change in the speed 

of light in the sun’s vicinity. “A curvature of rays of light can 

only take place when the velocity of propagation of light varies 

with position.” 

What a pity that remark was not printed in italics in Einstein’s 

book, or painted on balloons for all to see! Researchers and 

teachers ignored it for half a century, until radar echoes from 

Venus and Mercury in the late 1960s turned changes in the 

speed of light into an observed fact. Radar pulses sent out from 

the Haystack observatory in Massachusetts were clearly delayed 

whenever the planets were on the far side of the sun, as seen 

from the earth. The radio waves (a variety of light) slowed down 

as they passed the sun on their outward and return journey. 

Even in the 1970s it was hard to get more than the most 

grudging admission from experts on relativity that gravity 

slows down light, although Einstein himself was unabashed 

about it sixty years earlier. Undue emphasis on the constancy 

of light speed made general relativity unnecessarily opaque to 

students and the general public for several decades. Just come 

clean, and admit that light dawdles a little near a massive object 
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like the sun, and Einstein’s theory of gravity is far easier to un-

derstand. 

The experts were not being entirely perverse. One of the glo-

ries of general relativity is that the speed of light does indeed 

remain the same, provided you measure it on the spot. If you 

could station a heat-resistant spacecraft beside the sun to gauge 

Haystack’s radar pulses whizzing past, they would seem to be 

traveling at just the usual speed of light. The reason is that time, 

too, runs more slowly in the spacecraft, under the influence of the 

sun’s strong gravity. It’s only the distant observer, with a faster 

clock, who notices the slowdown. 

In special relativity, you’ll remember, different rates of time 

on the train and on the embankment enabled the observers to 

get the same answer for the speed of light. In general relativity, 

too, changes in clock-rates always keep the speed the same, as 

measured locally. That’s how Einstein ensures that natural laws 

hold good everywhere. Despite the effects of stronger gravity, 

atoms, particles, and radiant energy on the sun interact accord-

ing to exactly the same laws as on the earth. 

To say so is to run ahead of the chain of explanation in this 

book. These retrospective hints may nevertheless give you a sense 

of destination, as Einstein approaches “a serious difficulty” that 

“lies at the heart of things” and “lays no small claims on the pa-

tience and on the power of abstraction of the reader.” Also help-

ful, perhaps, is to note that the next step in the argument matches 

an idea illustrated in the science fiction movie 2001: A Space 

Odyssey, where a large space station simulates normal gravity 

by centrifugal force. The station rotates at an appropriate speed 

and the astronauts walk around a floor at the rim, with their 

feet pointing outwards, away from the center. 

SLITHERING IN SPACE-TIME 

The usual picture of gravity is turned inside out in Section 23, 

by putting an observer on a disc that is rotating. He feels a force 

pushing him outward, and like the man in the accelerated box he 
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is authorized by general relativity to call it gravity—a peculiar 

kind of gravity that becomes stronger the farther you are from 

the center. 

The man is also moving relative to the center of the disc. Re-

calling the effects of relative motion between a train and the 

track, Einstein notes that the man’s clock will run more slowly 

than a clock at the center of the disc. What’s more, if he puts a 

measuring rod along the edge of the disc in the direction of 

movement, to start measuring the circumference, the rod will 

be shorter than it would be at the center. On the other hand, the 

rod is not shortened when pointing toward the center of the disc, 

to measure the diameter. As a result, the circumference of the 

disc will seem to be greater than the diameter multiplied by � (pi, 

3.14 . . . )  which would be the case if the disc were at rest. 

When the effective length of a measuring rod can change, Eu-

clid’s geometry for flat surfaces no longer works. General rela-

tivity needs a suppler frame of reference, which Einstein sets 

up in Sections 24 to 28. First he imagines a rectangular grid of 

rods laid out on a marble slab, which goes askew if you heat 

part of the slab and some of the rods expand in length. The 

squares of the grid are no longer square. 

Not to worry. Carl Friedrich Gauss, a German mathemati-

cian and physicist who flourished in the early nineteenth cen-

tury, devised a system of coordinates in which the grid can be 

crooked and the lines curved. And just as Minkowski added 

time to the three dimensions of space in a rectangular system, 

Einstein adds supple time to Gauss’s supple system for describ-

ing space. Then, like a child in a floppy climbing-frame, he has 

a framework of space-time in which to play with his general 

theory of relativity. 

Einstein imagines his four-dimensional world to be inhabited 

by slithery creatures—he calls them molluscs—that can move 

about and change shape ad lib. General relativity requires that all 

molluscs should have “equal right and equal success” in formu-

lating the laws of nature. This invertebrate democracy might 

seem like a recipe for total confusion. Instead it imposes such 

strict legislation on the universe that the distortions of space-time 
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due to the influences of massive bodies provide a precise and 

novel theory of gravity. 

IMPROVING ON NEWTON 

The mathematics that Einstein used to tame his supple space-

time is too abstruse for the wide readership he aims for in this 

book. He contents himself with summarizing some key results, 

in Section 29. First, Newton’s law of gravity, in which the grav-

itational force between two bodies is inversely proportional to 

the square of the distance between them, springs ready-made 

from the molluscs’ weird world. Unlike Newton, Einstein can 

explain what is happening. Masses deform space, with the re-

sult that other masses follow curved tracks—as when the sun 

forces the planets to orbit around it. 

Moreover, Newton’s law of gravity is only approximately 

correct. Deviations become evident where gravity is strong, and 

they show how Einstein’s theory improves on Newton’s. One, 

already mentioned, is the extent of the bending of starlight when 

it passes near the sun. Another improvement concerns the 

misbehavior of the planet Mercury, first noticed by the French 

astronomer Urbain Leverrier in 1865, which finds a ready ex-

planation in Einstein’s theory of gravity. 

The planet’s elliptical orbit around the sun gradually swivels 

because of interactions with other planets, but this “preces-

sion” is greater than predicted by Newton’s theory. Searches 

for an unknown planet that might explain the discrepancy were 

unavailing. The explanation is slightly stronger gravity near the 

sun, provided by Einstein’s theory. All planetary orbits are af-

fected but Mercury’s the most because it is closest to the sun 

(see also Appendix 3a). 

Radar observations of Mercury later confirmed that the swivel-

ing matches Einstein’s theory to a high degree of accuracy. 

More spectacular in this regard is a pulsating radio star, or pul-

sar, discovered in 1974. It goes very closely around and around 

a silent companion, on an orbit that swivels far more rapidly 

than Mercury’s. In a double pulsar reported in 2004, the effect 
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is even greater. These systems are also seen to be shedding en-

ergy, supposedly by radiating gravitational waves that Einstein 

predicted in 1916. 

The third innovation from general relativity described in this 

book is nowadays known to scientists as the gravitational red-

shift. Einstein mentions it only briefly in Section 29 but gives 

more detail in Appendix 3c, where he writes: “An atom absorbs 

or emits light of a frequency which is dependent on the poten-

tial of the gravitational field in which it is situated.” As a symp-

tom of gravity’s amazing power to slow down time, the 

characteristic light emitted by atoms and molecules—their spec-

tral lines—will appear to distant observers to have lower fre-

quencies in strong gravity than on the earth or in empty space. 

They will be shifted towards the red end of the spectrum. 

Verification of the gravitational red-shift came in 1924. Walter 

Adams in California discovered that Sirius B is a very dense 

star, the first white dwarf ever identified. He reported that some 

emissions from hydrogen atoms showed marked reductions 

in frequency as required by Einstein’s theory. Much as with the 

1919 eclipse story, historians of science question the reliability 

of Adams’s result. The light from Sirius B was contaminated by 

light from the much brighter Sirius A. 

Never mind. The gravitational red-shift is now observed 

routinely in many astronomical objects including the sun. Even 

more convincingly for nonastronomers, the effect of gravity in 

slowing time is demonstrated directly with atomic clocks. They 

run faster in high-flying aircraft than they do on the ground. 

A COSMOLOGICAL SKETCH 

Part III of the book is entitled “Considerations on the Universe 

as a Whole.” It is very brief, and lest it should disappoint any-

one familiar with Einstein’s contributions to cosmology, be 

aware that when he wrote this book for the general public in 

1916, his ideas were still maturing. A key scientific paper, “Cos-

mological Considerations on the General Theory of Relativity,” 

did not appear until the following year. 
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Astronomical knowledge of the time, primitive by contem-

porary standards, misleads Einstein badly. Like Newton, he 

imagines stars scattered through the immensity of space and 

moving about only slowly. He is troubled, as Newton was, 

by the problem that gravity will tend to drag all the stars to-

gether. This outcome might be avoided if the stars were very 

evenly scattered, which was Newton’s own suggestion. By Ein-

stein’s young days, astronomers knew very well that the stars 

of the Milky Way are not at all uniform in their distribution. 

To avoid having all the stars fall together in a heap, the Ger-

man astronomer Hugo von Seeliger suggested that gravity must 

weaken at long ranges, more rapidly than prescribed by New-

ton’s inverse square law. This is the main theme of Section 30. 

Einstein indicates that he might welcome such an idea if only 

there were a logical reason for it. 

Another approach to the problem of the collapsing starfield ap-

pears in Section 31. Einstein proposes that cosmic space may be 

folded back upon itself. He invites us to share the worldview of 

flat beings living on what they perceive as a flat, two-dimensional 

surface, but which is in fact a sphere of large but finite size. 

There is no boundary to the flat creatures’ universe. If they trav-

eled far enough they would come back to their starting point, 

on a great circle. Without having to make a world tour, the flat 

beings can figure out what kind of universe they are living in, 

and even measure its diameter, by discovering subtle discrepan-

cies between the predictions of Euclid for truly flat surfaces, 

and what they find in practice. 

Similarly, you can imagine a super-geometry in which our 

own three-dimensional space is so folded that it is “finite” yet 

“unbounded.” Such a universe is congenial for general relativ-

ity and promises a way of preventing the stars falling together. 

This is Einstein’s assertion in the very brief Section 32 that, 

except for the appendices, brings his book to a close. The story 

ends abruptly with a cursory description of one possible form 

for the universe, which Einstein happens to like. The reader is 

left with a strong sense of unfinished business. 

To pursue in any detail here the dramatic cosmology that 
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unfolded in the twentieth century would be too lengthy a de-

parture from the main subjects of this book. Yet not to mention 

Einstein’s cosmological constant � (lambda) would be unfor-

givable. He introduced it into his equations in 1917, as a device 

akin to Seeliger’s idea of gravity weakening at long ranges. To 

stop the stars falling together, � adjusted the strength of gravity 

as required. Without �, a universe is unstable and it must be ei-

ther imploding or expanding, which was contrary to the my-

opic impressions of early twentieth-century astronomy. 

The discovery in the 1920s of the great cosmic expansion, in 

which the Milky Way is just one of many galaxies and the spaces 

between clusters of galaxies grow rapidly, made Einstein think 

he had blundered. Simply by leaving out �, he might have pre-

dicted both the expanding universe and the Big Bang with 

which it apparently began. Yet at the end of the twentieth cen-

tury the expansion of the universe turned out to be accelerating, 

and Einstein’s � has come back in triumph in the driving seat of 

the cosmos. 

And what about Euclid, with whom this book starts and fin-

ishes? Einstein wanted astronomers to emulate the flat beings of 

his folded two-dimensional universe and discover the overall 

geometry of the real world. If the universe were not “flat” in Eu-

clid’s ideal sense, it should act as a lens, and very distant objects 

should appear magnified or shrunk. The most distant observ-

able objects—clumps of hot gas that existed soon after the Big 

Bang—are now mapped by radio microwaves and they look nei-

ther bigger nor smaller than expected. In the geometers’ heaven, 

it’s a draw. Einstein trumps Euclid in the distorted space-time 

surrounding planets, stars, and galaxies, but the geometry of the 

universe at large still conforms very well to what that old Greek 

taught his students in Alexandria 2,300 years ago. 

GENERAL RELATIVITY STILL THRIVES 

To say much about the rest of Einstein’s life story in this intro-

duction might break the mental link that I have tried to fashion 
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with the relatively young Einstein who wrote the book. He 

would divorce Mileva and marry his cousin Elsa. The 1921 No-

bel Prize would come his way—not for relativity but for his in-

terpretation of the photoelectric effect. Later he would fall out 

with his fellow physicists over the interpretation of the quan-

tum theory. In 1932, as a Jewish refugee from the Nazis, he 

would find sanctuary in Princeton, New Jersey, and live there 

until his death in 1955. 

Much more relevant to the reader is the subsequent career of 

Einstein’s cleverest brainchild, general relativity. Despite many 

decades of efforts by experimenters and theorists to prove it im-

perfect, it still holds sway. Oft-repeated promises of a superior 

quantum theory of gravity remain only a speculation. 

A great theory should make surprising predictions that can 

be verified by observation, and go on to take unexpected discov-

eries in its stride. General relativity has performed supremely 

well on both counts. In addition to several successful tests al-

ready described, a huge effort is now going into the direct de-

tection of gravitational waves, which should squeeze and stretch 

space as they pass by. Failure to find them would be surprising 

because, as mentioned, the behavior of orbiting pulsars makes 

sense only if they are radiating gravitational waves. Another 

prediction currently under test with a satellite is that the earth 

should drag space-time around it as it rotates. 

The finest example of explaining the unexpected came with 

the discovery of quasars in 1963. These compact sources of ra-

diation in the hearts of some galaxies were far too powerful to 

rely on the nuclear energy that lights the stars. Ready to hand 

was an awful possibility implicit in general relativity. A massive 

object might collapse into a black hole, which would then be 

capable of squeezing huge amounts of energy out of any stars or 

gas falling into it. 

The idea of black holes won acceptance only gradually. Ob-

servations established the compactness of the quasars and the 

presence of material feeding their hearty appetites. Not until 

1994 did direct confirmation of the reality of black holes come 

in results from the Japanese satellite ASCA. Variations in the 
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wavelength of X-ray emissions from iron atoms in a stormy 

galaxy made a pattern predicted for material orbiting closely 

around a black hole. And a loss of energy by individual X-ray 

particles showed time slowing down in the intense gravity near 

the black hole, just as general relativity requires. 
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Preface 

The present book is intended, as far as possible, to give an exact 

insight into the theory of Relativity to those readers who, from 

a general scientific and philosophical point of view, are inter-

ested in the theory, but who are not conversant with the mathe-

matical apparatus of theoretical physics. The work presumes a 

standard of education corresponding to that of a university ma-

triculation examination, and, despite the shortness of the book, 

a fair amount of patience and force of will on the part of the 

reader. The author has spared himself no pains in his endeavour 

to present the main ideas in the simplest and most intelligible 

form, and on the whole, in the sequence and connection in which 

they actually originated. In the interest of clearness, it appeared 

to me inevitable that I should repeat myself frequently, without 

paying the slightest attention to the elegance of the presenta-

tion. I adhered scrupulously to the precept of that brilliant the-

oretical physicist L. Boltzmann, according to whom matters of 

elegance ought to be left to the tailor and to the cobbler. I make 

no pretence of having withheld from the reader difficulties 

which are inherent to the subject. On the other hand, I have 

purposely treated the empirical physical foundations of the the-

ory in a “step-motherly” fashion, so that readers unfamiliar 

with physics may not feel like the wanderer who was unable to 

see the forest for trees. May the book bring some one a few 

happy hours of suggestive thought! 

December 1916 A. EINSTEIN 





part i 

THE SPECIAL THEORY 
OF RELATIVITY 





one 
Physical Meaning 

of Geometrical Propositions 

In your schooldays most of you who read this book made ac-

quaintance with the noble building of Euclid’s geometry, and you 

remember—perhaps with more respect than love—the magnifi-

cent structure, on the lofty staircase of which you were chased 

about for uncounted hours by conscientious teachers. By reason 

of your past experience, you would certainly regard everyone 

with disdain who should pronounce even the most out-of-the-

way proposition of this science to be untrue. But perhaps this 

feeling of proud certainty would leave you immediately if some 

one were to ask you: “What, then, do you mean by the assertion 

that these propositions are true?” Let us proceed to give this ques-

tion a little consideration. 

Geometry sets out from certain conceptions such as “plane,” 

“point,” and “straight line,” with which we are able to associ-

ate more or less definite ideas, and from certain simple proposi-

tions (axioms) which, in virtue of these ideas, we are inclined 

to accept as “true.” Then, on the basis of a logical process, the 

justification of which we feel ourselves compelled to admit, all 

remaining propositions are shown to follow from those ax-

ioms, i.e. they are proven. A proposition is then correct (“true”) 

when it has been derived in the recognised manner from the ax-

ioms. The question of the “truth” of the individual geometrical 

propositions is thus reduced to one of the “truth” of the axioms. 

Now it has long been known that the last question is not only 

unanswerable by the methods of geometry, but that it is in itself 

entirely without meaning. We cannot ask whether it is true that 

only one straight line goes through two points. We can only say 

that Euclidean geometry deals with things called “straight lines,” 
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to each of which is ascribed the property of being uniquely de-

termined by two points situated on it. The concept “true” does 

not tally with the assertions of pure geometry, because by the 

word “true” we are eventually in the habit of designating always 

the correspondence with a “real” object; geometry, however, is 

not concerned with the relation of the ideas involved in it to ob-

jects of experience, but only with the logical connection of these 

ideas among themselves. 

It is not difficult to understand why, in spite of this, we feel 

constrained to call the propositions of geometry “true.” Geo-

metrical ideas correspond to more or less exact objects in na-

ture, and these last are undoubtedly the exclusive cause of the 

genesis of those ideas. Geometry ought to refrain from such a 

course, in order to give to its structure the largest possible logi-

cal unity. The practice, for example, of seeing in a “distance” 

two marked positions on a practically rigid body is something 

which is lodged deeply in our habit of thought. We are accus-

tomed further to regard three points as being situated on a 

straight line, if their apparent positions can be made to coincide 

for observation with one eye, under suitable choice of our place 

of observation. 

If, in pursuance of our habit of thought, we now supplement 

the propositions of Euclidean geometry by the single proposi-

tion that two points on a practically rigid body always corre-

spond to the same distance (line-interval), independently of any 

changes in position to which we may subject the body, the 

propositions of Euclidean geometry then resolve themselves 

into propositions on the possible relative position of practically 

rigid bodies.1 Geometry which has been supplemented in this 

way is then to be treated as a branch of physics. We can now le-

gitimately ask as to the “truth” of geometrical propositions in-

terpreted in this way, since we are justified in asking whether 

these propositions are satisfied for those real things we have 

1 It follows that a natural object is associated also with a straight line. Three 

points A, B and C on a rigid body thus lie in a straight line when, the points 

A and C being given, B is chosen such that the sum of the distances A B and 

B C  is as short as possible. This incomplete suggestion will suffice for our pres-

ent purpose. 
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associated with the geometrical ideas. In less exact terms we 

can express this by saying that by the “truth” of a geometrical 

proposition in this sense we understand its validity for a con-

struction with ruler and compasses. 

Of course the conviction of the “truth” of geometrical pro-

positions in this sense is founded exclusively on rather incom-

plete experience. For the present we shall assume the “truth” of 

the geometrical propositions, then at a later stage (in the general 

theory of relativity) we shall see that this “truth” is limited, and 

we shall consider the extent of its limitation. 



two 
The System of Co-ordinates 

On the basis of the physical interpretation of distance which 

has been indicated, we are also in a position to establish the 

distance between two points on a rigid body by means of 

measurements. For this purpose we require a “distance” (rod 

S) which is to be used once and for all, and which we employ 

as a standard measure. If, now, A and B are two points on a 

rigid body, we can construct the line joining them according 

to the rules of geometry; then, starting from A, we can mark 

off the distance S time after time until we reach B. The num-

ber of these operations required is the numerical measure of 

the distance A B. This is the basis of all measurement of 

length.1 

Every description of the scene of an event or of the position 

of an object in space is based on the specification of the point 

on a rigid body (body of reference) with which that event or ob-

ject coincides. This applies not only to scientific description, but 

also to everyday life. If I analyse the place specification “Trafal-

gar Square, London,”2 I arrive at the following result. The earth 

is the rigid body to which the specification of place refers; 

“Trafalgar Square, London,” is a well-defined point, to which 

1 Here we have assumed that there is nothing left over, i.e. that the measure-

ment gives a whole number. This difficulty is got over by the use of divided 

measuring-rods, the introduction of which does not demand any fundamen-

tally new method. 
2 I have chosen this as being more familiar to the English reader than the “Pots-

damer Platz, Berlin,” which is referred to in the original. (R. W. L., translator) 
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a name has been assigned, and with which the event coincides 

in space.3 

This primitive method of place specification deals only with 

places on the surface of rigid bodies, and is dependent on the 

existence of points on this surface which are distinguishable 

from each other. But we can free ourselves from both of these 

limitations without altering the nature of our specification of 

position. If, for instance, a cloud is hovering over Trafalgar 

Square, then we can determine its position relative to the sur-

face of the earth by erecting a pole perpendicularly on the 

Square, so that it reaches the cloud. The length of the pole mea-

sured with the standard measuring-rod, combined with the 

specification of the position of the foot of the pole, supplies us 

with a complete place specification. On the basis of this illus-

tration, we are able to see the manner in which a refinement of 

the conception of position has been developed. 

(a) We imagine the rigid body, to which the place specification 

is referred, supplemented in such a manner that the object whose 

position we require is reached by the completed rigid body. 

(b) In locating the position of the object, we make use of a 

number (here the length of the pole measured with the measuring-

rod) instead of designated points of reference. 

(c) We speak of the height of the cloud even when the pole 

which reaches the cloud has not been erected. By means of op-

tical observations of the cloud from different positions on the 

ground, and taking into account the properties of the propaga-

tion of light, we determine the length of the pole we should 

have required in order to reach the cloud. 

From this consideration we see that it will be advantageous 

if, in the description of position, it should be possible by means 

of numerical measures to make ourselves independent of the 

existence of marked positions (possessing names) on the rigid 

3 It is not necessary here to investigate further the significance of the expression 

“coincidence in space.” This conception is sufficiently obvious to ensure that 

differences of opinion are scarcely likely to arise as to its applicability in prac-

tice. 
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body of reference. In the physics of measurement this is attained 

by the application of the Cartesian system of co-ordinates. 

This consists of three plane surfaces perpendicular to each 

other and rigidly attached to a rigid body. Referred to a system 

of co-ordinates, the scene of any event will be determined (for the 

main part) by the specification of the lengths of the three perpen-

diculars or co-ordinates (x, y, z) which can be dropped from the 

scene of the event to those three plane surfaces. The lengths of 

these three perpendiculars can be determined by a series of ma-

nipulations with rigid measuring-rods performed according to 

the rules and methods laid down by Euclidean geometry. 

In practice, the rigid surfaces which constitute the system of 

co-ordinates are generally not available; furthermore, the mag-

nitudes of the co-ordinates are not actually determined by con-

structions with rigid rods, but by indirect means. If the results 

of physics and astronomy are to maintain their clearness, the 

physical meaning of specifications of position must always be 

sought in accordance with the above considerations.4 

We thus obtain the following result: Every description of 

events in space involves the use of a rigid body to which such 

events have to be referred. The resulting relationship takes for 

granted that the laws of Euclidean geometry hold for “dis-

tances,” the “distance” being represented physically by means 

of the convention of two marks on a rigid body. 

4 A refinement and modification of these views does not become necessary until 

we come to deal with the general theory of relativity, treated in the second part 

of this book. 



three 
Space and Time in Classical Mechanics 

The purpose of mechanics is to describe how bodies change 

their position in space with “time.” I should load my con-

science with grave sins against the sacred spirit of lucidity were 

I to formulate the aims of mechanics in this way, without seri-

ous reflection and detailed explanations. Let us proceed to dis-

close these sins. 

It is not clear what is to be understood here by “position” and 

“space.” I stand at the window of a railway carriage which is 

travelling uniformly, and drop a stone on the embankment, with-

out throwing it. Then, disregarding the influence of the air resis-

tance, I see the stone descend in a straight line. A pedestrian who 

observes the misdeed from the footpath notices that the stone 

falls to earth in a parabolic curve. I now ask: Do the “positions” 

traversed by the stone lie “in reality” on a straight line or on a 

parabola? Moreover, what is meant here by motion “in space”? 

From the considerations of the previous section the answer is 

self-evident. In the first place we entirely shun the vague word 

“space,” of which, we must honestly acknowledge, we cannot 

form the slightest conception, and we replace it by “motion rela-

tive to a practically rigid body of reference.” The positions rela-

tive to the body of reference (railway carriage or embankment) 

have already been defined in detail in the preceding section. If in-

stead of “body of reference” we insert “system of co-ordinates,” 

which is a useful idea for mathematical description, we are in a 

position to say: The stone traverses a straight line relative to a 

system of co-ordinates rigidly attached to the carriage, but rela-

tive to a system of co-ordinates rigidly attached to the ground 

(embankment) it describes a parabola. With the aid of this exam-
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ple it is clearly seen that there is no such thing as an indepen-

dently existing trajectory (lit. “path-curve”1), but only a trajec-

tory relative to a particular body of reference. 

In order to have a complete description of the motion, we 

must specify how the body alters its position with time; i.e. for 

every point on the trajectory it must be stated at what time 

the body is situated there. These data must be supplemented by 

such a definition of time that, in virtue of this definition, these 

time-values can be regarded essentially as magnitudes (results 

of measurements) capable of observation. If we take our stand 

on the ground of classical mechanics, we can satisfy this require-

ment for our illustration in the following manner. We imagine 

two clocks of identical construction; the man at the railway-

carriage window is holding one of them, and the man on the 

footpath the other. Each of the observers determines the position 

on his own reference-body occupied by the stone at each tick of 

the clock he is holding in his hand. In this connection we have 

not taken account of the inaccuracy involved by the finiteness of 

the velocity of propagation of light. With this and with a second 

difficulty prevailing here we shall have to deal in detail later. 

1 That is, a curve along which the body moves. 



four 
The Galileian System of Co-ordinates 

As is well known, the fundamental law of the mechanics of 

Galilei-Newton, which is known as the law of inertia, can be 

stated thus: A body removed sufficiently far from other bodies 

continues in a state of rest or of uniform motion in a straight 

line. This law not only says something about the motion of the 

bodies, but it also indicates the reference-bodies or systems of 

co-ordinates, permissible in mechanics, which can be used in 

mechanical description. The visible fixed stars are bodies for 

which the law of inertia certainly holds to a high degree of ap-

proximation. Now if we use a system of co-ordinates which is 

rigidly attached to the earth, then, relative to this system, every 

fixed star describes a circle of immense radius in the course of 

an astronomical day, a result which is opposed to the statement 

of the law of inertia. So that if we adhere to this law we must 

refer these motions only to systems of co-ordinates relative to 

which the fixed stars do not move in a circle. A system of co-

ordinates of which the state of motion is such that the law of 

inertia holds relative to it is called a “Galileian system of co-

ordinates.” The laws of the mechanics of Galilei-Newton can 

be regarded as valid only for a Galileian system of co-ordinates. 



five 
The Principle of Relativity 
(in the Restricted Sense) 

In order to attain the greatest possible clearness, let us return to 

our example of the railway carriage supposed to be travelling 

uniformly. We call its motion a uniform translation (“uniform” 

because it is of constant velocity and direction, “translation” 

because although the carriage changes its position relative to 

the embankment yet it does not rotate in so doing). Let us imag-

ine a raven flying through the air in such a manner that its mo-

tion, as observed from the embankment, is uniform and in 

a straight line. If we were to observe the flying raven from the 

moving railway carriage, we should find that the motion of the 

raven would be one of different velocity and direction, but that 

it would still be uniform and in a straight line. Expressed in an 

abstract manner we may say: If a mass m is moving uniformly 

in a straight line with respect to a co-ordinate system K, then it 

will also be moving uniformly and in a straight line relative to a 

second co-ordinate system K�, provided that the latter is execut-

ing a uniform translatory motion with respect to K. In accor-

dance with the discussion contained in the preceding section, it 

follows that: 

If K is a Galileian co-ordinate system, then every other co-

ordinate system K� is a Galileian one, when, in relation to K, it 

is in a condition of uniform motion of translation. Relative to 

K� the mechanical laws of Galilei-Newton hold good exactly as 

they do with respect to K. 

We advance a step farther in our generalisation when we ex-

press the tenet thus: If, relative to K, K� is a uniformly moving 

co-ordinate system devoid of rotation, then natural phenomena 

run their course with respect to K� according to exactly the same 
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general laws as with respect to K. This statement is called the 

principle of relativity (in the restricted sense). 

As long as one was convinced that all natural phenomena were 

capable of representation with the help of classical mechanics, 

there was no need to doubt the validity of this principle of rela-

tivity. But in view of the more recent development of electrody-

namics and optics it became more and more evident that classical 

mechanics affords an insufficient foundation for the physical de-

scription of all natural phenomena. At this juncture the question 

of the validity of the principle of relativity became ripe for dis-

cussion, and it did not appear impossible that the answer to this 

question might be in the negative. 

Nevertheless, there are two general facts which at the outset 

speak very much in favour of the validity of the principle of 

relativity. Even though classical mechanics does not supply us 

with a sufficiently broad basis for the theoretical presentation 

of all physical phenomena, still we must grant it a considerable 

measure of “truth,” since it supplies us with the actual motions 

of the heavenly bodies with a delicacy of detail little short of 

wonderful. The principle of relativity must therefore apply with 

great accuracy in the domain of mechanics. But that a principle 

of such broad generality should hold with such exactness in one 

domain of phenomena, and yet should be invalid for another, is 

a priori not very probable. 

We now proceed to the second argument, to which, more-

over, we shall return later. If the principle of relativity (in the 

restricted sense) does not hold, then the Galileian co-ordinate 

systems K, K�, K�, etc., which are moving uniformly relative to 

each other, will not be equivalent for the description of natural 

phenomena. In this case we should be constrained to believe 

that natural laws are capable of being formulated in a particu-

larly simple manner, and of course only on condition that, from 

amongst all possible Galileian co-ordinate systems, we should 

have chosen one (K
0
) of a particular state of motion as our body 

of reference. We should then be justified (because of its merits 

for the description of natural phenomena) in calling this system 

“absolutely at rest,” and all other Galileian systems K “in mo-

tion.” If, for instance, our embankment were the system K
0
, 
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then our railway carriage would be a system K, relative to 

which less simple laws would hold than with respect to K
0
. This 

diminished simplicity would be due to the fact that the car-

riage K would be in motion (i.e. “really”) with respect to K
0
. In 

the general laws of nature which have been formulated with ref-

erence to K, the magnitude and direction of the velocity of the 

carriage would necessarily play a part. We should expect, for 

instance, that the note emitted by an organ-pipe placed with its 

axis parallel to the direction of travel would be different from 

that emitted if the axis of the pipe were placed perpendicular to 

this direction. Now in virtue of its motion in an orbit round the 

sun, our earth is comparable with a railway carriage travelling 

with a velocity of about 30 kilometres per second. If the princi-

ple of relativity were not valid we should therefore expect that 

the direction of motion of the earth at any moment would enter 

into the laws of nature, and also that physical systems in their 

behaviour would be dependent on the orientation in space with 

respect to the earth. For owing to the alteration in direction of 

the velocity of revolution of the earth in the course of a year, the 

earth cannot be at rest relative to the hypothetical system K
0 

throughout the whole year. However, the most careful observa-

tions have never revealed such anisotropic properties in terrestrial 

physical space, i.e. a physical non-equivalence of different direc-

tions. This is a very powerful argument in favour of the principle 

of relativity. 



six 
The Theorem of the Addition of Velocities 

Employed in Classical Mechanics 

Let us suppose our old friend the railway carriage to be travel-

ling along the rails with a constant velocity v, and that a man 

traverses the length of the carriage in the direction of travel 

with a velocity w. How quickly or, in other words, with what ve-

locity W does the man advance relative to the embankment dur-

ing the process? The only possible answer seems to result from 

the following consideration: If the man were to stand still for a 

second, he would advance relative to the embankment through 

a distance v equal numerically to the velocity of the carriage. As 

a consequence of his walking, however, he traverses an addi-

tional distance w relative to the carriage, and hence also relative 

to the embankment, in this second, the distance w being nu-

merically equal to the velocity with which he is walking. Thus 

in total he covers the distance W � v � w relative to the em-

bankment in the second considered. We shall see later that this 

result, which expresses the theorem of the addition of velocities 

employed in classical mechanics, cannot be maintained; in 

other words, the law that we have just written down does not 

hold in reality. For the time being, however, we shall assume its 

correctness. 



seven 
The Apparent Incompatibility 

of the Law of Propagation of Light 
with the Principle of Relativity 

There is hardly a simpler law in physics than that according to 

which light is propagated in empty space. Every child at school 

knows, or believes he knows, that this propagation takes place 

in straight lines with a velocity c � 300,000 km./sec. At all events 

we know with great exactness that this velocity is the same for 

all colours, because if this were not the case, the minimum of 

emission would not be observed simultaneously for different 

colours during the eclipse of a fixed star by its dark neighbour. 

By means of similar considerations based on observations of 

double stars, the Dutch astronomer De Sitter was also able to 

show that the velocity of propagation of light cannot depend on 

the velocity of motion of the body emitting the light. The as-

sumption that this velocity of propagation is dependent on the 

direction “in space” is in itself improbable. 

In short, let us assume that the simple law of the constancy of 

the velocity of light c (in vacuum) is justifiably believed by the 

child at school. Who would imagine that this simple law has 

plunged the conscientiously thoughtful physicist into the great-

est intellectual difficulties? Let us consider how these difficul-

ties arise. 

Of course we must refer the process of the propagation of 

light (and indeed every other process) to a rigid reference-body 

(co-ordinate system). As such a system let us again choose our 

embankment. We shall imagine the air above it to have been re-

moved. If a ray of light be sent along the embankment, we see 

from the above that the tip of the ray will be transmitted with 

the velocity c relative to the embankment. Now let us suppose 

that our railway carriage is again travelling along the railway 
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lines with the velocity v, and that its direction is the same as 

that of the ray of light, but its velocity of course much less. Let 

us inquire about the velocity of propagation of the ray of light 

relative to the carriage. It is obvious that we can here apply the 

consideration of the previous section, since the ray of light plays 

the part of the man walking along relatively to the carriage. The 

velocity W of the man relative to the embankment is here re-

placed by the velocity of light relative to the embankment. w is 

the required velocity of light with respect to the carriage, and 

we have 

w � c � v. 

The velocity of propagation of a ray of light relative to the car-

riage thus comes out smaller than c. 

But this result comes into conflict with the principle of rela-

tivity set forth in Section 5. For, like every other general law of 

nature, the law of the transmission of light in vacuo must, ac-

cording to the principle of relativity, be the same for the railway 

carriage as reference-body as when the rails are the body of ref-

erence. But, from our above consideration, this would appear to 

be impossible. If every ray of light is propagated relative to the 

embankment with the velocity c, then for this reason it would 

appear that another law of propagation of light must necessar-

ily hold with respect to the carriage—a result contradictory to 

the principle of relativity. 

In view of this dilemma there appears to be nothing else for it 

than to abandon either the principle of relativity or the simple 

law of the propagation of light in vacuo. Those of you who 

have carefully followed the preceding discussion are almost 

sure to expect that we should retain the principle of relativity, 

which appeals so convincingly to the intellect because it is so 

natural and simple. The law of the propagation of light in 

vacuo would then have to be replaced by a more complicated 

law comformable to the principle of relativity. The development 

of theoretical physics shows, however, that we cannot pursue 

this course. The epoch-making theoretical investigations of 

H. A. Lorentz on the electrodynamical and optical phenomena 
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connected with moving bodies show that experience in this do-

main leads conclusively to a theory of electromagnetic phenom-

ena, of which the law of the constancy of the velocity of light in 

vacuo is a necessary consequence. Prominent theoretical physi-

cists were therefore more inclined to reject the principle of rela-

tivity, in spite of the fact that no empirical data had been found 

which were contradictory to this principle. 

At this juncture the theory of relativity entered the arena. As 

a result of an analysis of the physical conceptions of time and 

space, it became evident that in reality there is not the least in-

compatibility between the principle of relativity and the law of 

propagation of light, and that by systematically holding fast to 

both these laws a logically rigid theory could be arrived at. This 

theory has been called the special theory of relativity to distin-

guish it from the extended theory, with which we shall deal 

later. In the following pages we shall present the fundamental 

ideas of the special theory of relativity. 



eight 
On the Idea of Time in Physics 

Lightning has struck the rails on our railway embankment at 

two places A and B far distant from each other. I make the ad-

ditional assertion that these two lightning flashes occurred si-

multaneously. If I ask you whether there is sense in this statement, 

you will answer my question with a decided “Yes.” But if I now 

approach you with the request to explain to me the sense of the 

statement more precisely, you find after some consideration that 

the answer to this question is not so easy as it appears at first 

sight. 

After some time perhaps the following answer would occur 

to you: “The significance of the statement is clear in itself and 

needs no further explanation; of course it would require some 

consideration if I were to be commissioned to determine by ob-

servations whether in the actual case the two events took place 

simultaneously or not.” I cannot be satisfied with this answer 

for the following reason. Supposing that as a result of ingenious 

consideration an able meteorologist were to discover that the 

lightning must always strike the places A and B simultaneously, 

then we should be faced with the task of testing whether or not 

this theoretical result is in accordance with the reality. We en-

counter the same difficulty with all physical statements in which 

the conception “simultaneous” plays a part. The concept does 

not exist for the physicist until he has the possibility of discov-

ering whether or not it is fulfilled in an actual case. We thus re-

quire a definition of simultaneity such that this definition supplies 

us with the method by means of which, in the present case, he 

can decide by experiment whether or not both the lightning 

strokes occurred simultaneously. As long as this requirement is 
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not satisfied, I allow myself to be deceived as a physicist (and of 

course the same applies if I am not a physicist), when I imagine 

that I am able to attach a meaning to the statement of simul-

taneity. (I would ask the reader not to proceed farther until he is 

fully convinced on this point.) 

After thinking the matter over for some time you then offer 

the following suggestion with which to test simultaneity. By mea-

suring along the rails, the connecting line AB should be measured 

up and an observer placed at the mid-point M of the distance 

AB. This observer should be supplied with an arrangement (e.g. 

two mirrors inclined at 90°) which allows him visually to ob-

serve both places A and B at the same time. If the observer per-

ceives the two flashes of lightning at the same time, then they 

are simultaneous. 

I am very pleased with this suggestion, but for all that I cannot 

regard the matter as quite settled, because I feel constrained to 

raise the following objection: “Your definition would certainly 

be right, if only I knew that the light by means of which the ob-

server at M perceives the lightning flashes travels along the length 

A → M with the same velocity as along the length B → M. But an 

examination of this supposition would only be possible if we al-

ready had at our disposal the means of measuring time. It would 

thus appear as though we were moving here in a logical circle.” 

After further consideration you cast a somewhat disdainful 

glance at me—and rightly so—and you declare: “I maintain my 

previous definition nevertheless, because in reality it assumes 

absolutely nothing about light. There is only one demand to be 

made of the definition of simultaneity, namely, that in every real 

case it must supply us with an empirical decision as to whether 

or not the conception that has to be defined is fulfilled. That my 

definition satisfies this demand is indisputable. That light re-

quires the same time to traverse the path A → M as for the path 

B → M is in reality neither a supposition nor a hypothesis 

about the physical nature of light, but a stipulation which I can 

make of my own freewill in order to arrive at a definition of si-

multaneity.” 

It is clear that this definition can be used to give an exact 

meaning not only to two events, but to as many events as we 
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care to choose, and independently of the positions of the scenes 

of the events with respect to the body of reference1 (here the 

railway embankment). We are thus led also to a definition of 

“time” in physics. For this purpose we suppose that clocks of 

identical construction are placed at the points A, B and C of the 

railway line (co-ordinate system), and that they are set in such a 

manner that the positions of their pointers are simultaneously 

(in the above sense) the same. Under these conditions we under-

stand by the “time” of an event the reading (position of the 

hands) of that one of these clocks which is in the immediate 

vicinity (in space) of the event. In this manner a time-value is as-

sociated with every event which is essentially capable of obser-

vation. 

This stipulation contains a further physical hypothesis, the 

validity of which will hardly be doubted without empirical evi-

dence to the contrary. It has been assumed that all these clocks 

go at the same rate if they are of identical construction. Stated 

more exactly: When two clocks arranged at rest in different 

places of a reference-body are set in such a manner that a par-

ticular position of the pointers of the one clock is simultaneous 

(in the above sense) with the same position of the pointers of 

the other clock, then identical “settings” are always simultane-

ous (in the sense of the above definition). 

1 We suppose further, that, when three events A, B and C occur in different 

places in such a manner that A is simultaneous with B, and B is simultaneous 

with C (simultaneous in the sense of the above definition), then the criterion for 

the simultaneity of the pair of events A, C is also satisfied. This assumption is 

a physical hypothesis about the law of propagation of light; it must certainly 

be fulfilled if we are to maintain the law of the constancy of the velocity of 

light in vacuo. 



nine 
The Relativity of Simultaneity 

Up to now our considerations have been referred to a particular 

body of reference, which we have styled a “railway embank-

ment.” We suppose a very long train travelling along the rails 

with the constant velocity v and in the direction indicated in 

Fig. 1. People travelling in this train will with advantage use the 

train as a rigid reference-body (co-ordinate system); they regard 

all events in reference to the train. Then every event which takes 

place along the line also takes place at a particular point of the 

train. Also the definition of simultaneity can be given relative 

to the train in exactly the same way as with respect to the em-

bankment. As a natural consequence, however, the following 

question arises: 

Are two events (e.g. the two strokes of lightning A and B) 

which are simultaneous with reference to the railway embank-

ment also simultaneous relatively to the train? We shall show 

directly that the answer must be in the negative. 

When we say that the lightning strokes A and B are simulta-

neous with respect to the embankment, we mean: the rays of 

light emitted at the places A and B, where the lightning occurs, 

meet each other at the mid-point M of the length A → B of the 

M'v v 
Train 

A M B Embankment 

Fig. 1 
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embankment. But the events A and B also correspond to posi-

tions A and B on the train. Let M� be the mid-point of the dis-

tance A → B on the travelling train. Just when the flashes1 of 

lightning occur, this point M� naturally coincides with the point 

M, but it moves towards the right in the diagram with the ve-

locity v of the train. If an observer sitting in the position M� in 

the train did not possess this velocity, then he would remain 

permanently at M, and the light rays emitted by the flashes of 

lightning A and B would reach him simultaneously, i.e. they 

would meet just where he is situated. Now in reality (consid-

ered with reference to the railway embankment) he is hastening 

towards the beam of light coming from B, whilst he is riding 

on ahead of the beam of light coming from A. Hence the ob-

server will see the beam of light emitted from B earlier than he 

will see that emitted from A. Observers who take the railway 

train as their reference-body must therefore come to the conclu-

sion that the lightning flash B took place earlier than the light-

ning flash A. We thus arrive at the important result: 

Events which are simultaneous with reference to the embank-

ment are not simultaneous with respect to the train, and vice 

versa (relativity of simultaneity). Every reference-body (co-

ordinate system) has its own particular time; unless we are told 

the reference-body to which the statement of time refers, there 

is no meaning in a statement of the time of an event. 

Now before the advent of the theory of relativity it had 

always tacitly been assumed in physics that the statement of 

time had an absolute significance, i.e. that it is independent 

of the state of motion of the body of reference. But we have just 

seen that this assumption is incompatible with the most natural 

definition of simultaneity; if we discard this assumption, then 

the conflict between the law of the propagation of light in 

vacuo and the principle of relativity (developed in Section 7) 

disappears. 

We were led to that conflict by the considerations of Section 6, 

which are now no longer tenable. In that section we concluded 

that the man in the carriage, who traverses the distance w per 

1 As judged from the embankment. 
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second relative to the carriage, traverses the same distance also 

with respect to the embankment in each second of time. But, ac-

cording to the foregoing considerations, the time required by a 

particular occurrence with respect to the carriage must not be 

considered equal to the duration of the same occurrence as judged 

from the embankment (as reference-body). Hence it cannot be 

contended that the man in walking travels the distance w relative 

to the railway line in a time which is equal to one second as 

judged from the embankment. 

Moreover, the considerations of Section 6 are based on yet a 

second assumption, which, in the light of a strict consideration, 

appears to be arbitrary, although it was always tacitly made 

even before the introduction of the theory of relativity. 



ten 
On the Relativity of the Conception 

of Distance 

Let us consider two particular points on the train1 travelling 

along the embankment with the velocity v, and inquire as to 

their distance apart. We already know that it is necessary to 

have a body of reference for the measurement of a distance, 

with respect to which body the distance can be measured up. It 

is the simplest plan to use the train itself as reference-body (co-

ordinate system). An observer in the train measures the interval 

by marking off his measuring-rod in a straight line (e.g. along 

the floor of the carriage) as many times as is necessary to take 

him from the one marked point to the other. Then the number 

which tells us how often the rod has to be laid down is the 

required distance. 

It is a different matter when the distance has to be judged 

from the railway line. Here the following method suggests it-

self. If we call A� and B� the two points on the train whose dis-

tance apart is required, then both of these points are moving 

with the velocity v along the embankment. In the first place we 

require to determine the points A and B of the embankment 

which are just being passed by the two points A� and B� at a 

particular time t—judged from the embankment. These points 

A and B of the embankment can be determined by applying the 

definition of time given in Section 8. The distance between these 

points A and B is then measured by repeated application of 

the measuring-rod along the embankment. 

A priori it is by no means certain that this last measurement 

will supply us with the same result as the first. Thus the length 

1 E.g. the middle of the first and of the twentieth carriage. 
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of the train as measured from the embankment may be different 

from that obtained by measuring in the train itself. This cir-

cumstance leads us to a second objection which must be raised 

against the apparently obvious consideration of Section 6. 

Namely, if the man in the carriage covers the distance w in a unit 

of time—measured from the train—then this distance—as mea-

sured from the embankment—is not necessarily also equal to w. 



eleven 
The Lorentz Transformation 

The results of the last three sections show that the apparent 

incompatibility of the law of propagation of light with the 

principle of relativity (Section 7) has been derived by means of 

a consideration which borrowed two unjustifiable hypotheses 

from classical mechanics; these are as follows: 

(1) The time-interval (time) between two events is independent of 

the condition of motion of the body of reference. 

(2) The space-interval (distance) between two points of a rigid 

body is independent of the condition of motion of the body of 

reference. 

If we drop these hypotheses, then the dilemma of Section 7 

disappears, because the theorem of the addition of velocities 

derived in Section 6 becomes invalid. The possibility presents 

itself that the law of the propagation of light in vacuo may be 

compatible with the principle of relativity, and the question 

arises: How have we to modify the considerations of Section 6 

in order to remove the apparent disagreement between these 

two fundamental results of experience? This question leads to a 

general one. In the discussion of Section 6 we have to do with 

places and times relative both to the train and to the embank-

ment. How are we to find the place and time of an event in re-

lation to the train, when we know the place and time of the 

event with respect to the railway embankment? Is there a think-

able answer to this question of such a nature that the law of 

transmission of light in vacuo does not contradict the principle 

of relativity? In other words: Can we conceive of a relation 
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between place and time of the individual events relative to both 

reference-bodies, such that every ray of light possesses the ve-

locity of transmission c relative to the embankment and relative 

to the train? This question leads to a quite definite positive an-

swer, and to a perfectly definite transformation law for the 

space-time magnitudes of an event when changing over from 

one body of reference to another. 

Before we deal with this, we shall introduce the following in-

cidental consideration. Up to the present we have only consid-

ered events taking place along the embankment, which had 

mathematically to assume the function of a straight line. In the 

manner indicated in Section 2 we can imagine this reference-

body supplemented laterally and in a vertical direction by means 

of a framework of rods, so that an event which takes place any-

where can be localised with reference to this framework. Simi-

larly, we can imagine the train travelling with the velocity v to 

be continued across the whole of space, so that every event, no 

matter how far off it may be, could also be localised with re-

spect to the second framework. Without committing any fun-

damental error, we can disregard the fact that in reality these 

frameworks would continually interfere with each other, owing 

to the impenetrability of solid bodies. In every such framework 

we imagine three surfaces perpendicular to each other marked 

out, and designated as “co-ordinate planes” (“co-ordinate sys-

tem”). A co-ordinate system K then corresponds to the em-

bankment, and a co-ordinate system K� to the train. An event, 

wherever it may have taken place, would be fixed in space with 

respect to K by the three perpendiculars x, y, z on the co-

ordinate planes, and with regard to time by a time-value t. Rel-

ative to K�, the same event would be fixed in respect of space and 

time by corresponding values x�, y�, z�, t�, which of course are 

not identical with x, y, z, t. It has already been set forth in de-

tail how these magnitudes are to be regarded as results of phys-

ical measurements. 

Obviously our problem can be exactly formulated in the fol-

lowing manner. What are the values x�, y�, z�, t�, of an event with 

respect to K�, when the magnitudes x, y, z, t, of the same event 

with respect to K are given? The relations must be so chosen 
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that the law of the transmission of light in vacuo is satisfied for 

one and the same ray of light (and of course for every ray) with 

respect to K and K�. For the relative orientation in space of the 

co-ordinate systems indicated in the diagram (Fig. 2), this prob-

lem is solved by means of the equations: 

x�vt 
x�� �� 

�1 � �
2v 

c2 

y�� y 

z� �  z 
v

t � �� . x
2c 

t�� �� 

�1 � �
2v 

c2 

This system of equations is known as the “Lorentz transforma-

tion.”1 

If in place of the law of transmission of light we had taken as 

our basis the tacit assumptions of the older mechanics as to the 

1 A simple derivation of the Lorentz transformation is given in Appendix 1. 
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absolute character of times and lengths, then instead of the 

above we should have obtained the following equations: 

x� � x � vt 

y� � y 

z� � z 

t� � t. 

This system of equations is often termed the “Galilei transfor-

mation.” The Galilei transformation can be obtained from the 

Lorentz transformation by substituting an infinitely large value 

for the velocity of light c in the latter transformation. 

Aided by the following illustration, we can readily see that, 

in accordance with the Lorentz transformation, the law of the 

transmission of light in vacuo is satisfied both for the reference-

body K and for the reference-body K�. A light-signal is sent 

along the positive x-axis, and this light-stimulus advances in ac-

cordance with the equation 

x � ct, 

i.e. with the velocity c. According to the equations of the 

Lorentz transformation, this simple relation between x and t in-

volves a relation between x� and t�. In point of fact, if we sub-

stitute for x the value ct in the first and fourth equations of the 

Lorentz transformation, we obtain: 

(c � v)t 
x��� 

�2v�1 � ��
c2 

v
1 � ���t c 

t��� , 

�2v�1 � ��
c2 

from which, by division, the expression 

x� � ct� 
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immediately follows. If referred to the system K�, the propaga-

tion of light takes place according to this equation. We thus see 

that the velocity of transmission relative to the reference-body 

K� is also equal to c. The same result is obtained for rays of 

light advancing in any other direction whatsoever. Of course 

this is not surprising, since the equations of the Lorentz trans-

formation were derived conformably to this point of view. 
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twelve 
The Behaviour of Measuring-Rods 

and Clocks in Motion 

I place a metre-rod in the x�-axis of K� in such a manner that one 

end (the beginning) coincides with the point x� � 0, whilst the 

other end (the end of the rod) coincides with the point x� � 1. 

What is the length of the metre-rod relatively to the system K? 

In order to learn this, we need only ask where the beginning of 

the rod and the end of the rod lie with respect to K at a partic-

ular time t of the system K. By means of the first equation of the 

Lorentz transformation the values of these two points at the 

time t � 0 can be shown to be 

�2v 
x

(beginning of rod) 
� 0�1� ��

c2 

2v 
x

(end of rod) 
� 1.�1� ��

c2 

2v
the distance between the points being �1� ���. But the metre-rod 

c2 

is moving with the velocity v relative to K. It therefore follows 

that the length of a rigid metre-rod moving in the direction of 

its length with a velocity v is �1 � v2/c2�� of a metre. The rigid 

rod is thus shorter when in motion than when at rest, and the 

more quickly it is moving, the shorter is the rod. For the veloc-

ity v � c we should have ��1 � v2/c2 � 0, and for still greater 

velocities the square-root becomes imaginary. From this we con-

clude that in the theory of relativity the velocity c plays the part 

of a limiting velocity, which can neither be reached nor exceeded 

by any real body. 
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Of course this feature of the velocity c as a limiting velocity 

also clearly follows from the equations of the Lorentz transfor-

mation, for these become meaningless if we choose values of 

v greater than c. 

If, on the contrary, we had considered a metre-rod at rest in 

the x-axis with respect to K, then we should have found that the 

length of the rod as judged from K� would have been �1 � v2/c2

this is quite in accordance with the principle of relativity which 

forms the basis of our considerations. 

A priori it is quite clear that we must be able to learn some-

thing about the physical behaviour of measuring-rods and 

clocks from the equations of transformation, for the magni-

tudes x, y, z, t, are nothing more nor less than the results of mea-

surements obtainable by means of measuring-rods and clocks. If 

we had based our considerations on the Galileian transforma-

tion we should not have obtained a contraction of the rod as a 

consequence of its motion. 

Let us now consider a seconds-clock which is permanently 

situated at the origin (x�� 0) of K�. t�� 0 and t�� 1 are two 

successive ticks of this clock. The first and fourth equations of 

the Lorentz transformation give for these two ticks: 

t � 0 

and 
1 

t �� 

�2v�1 � ��
c2 

As judged from K, the clock is moving with the velocity v; as 

judged from this reference-body, the time which elapses between 

1

�2vtwo strokes of the clock is not one second, but �1 � �� seconds, 
c2 

i.e. a somewhat larger time. As a consequence of its motion the 

clock goes more slowly than when at rest. Here also the veloc-

ity c plays the part of an unattainable limiting velocity. 



thirteen 
Theorem of the Addition of the Velocities. 

The Experiment of Fizeau 

Now in practice we can move clocks and measuring-rods only 

with velocities that are small compared with the velocity of 

light; hence we shall hardly be able to compare the results of 

the previous section directly with the reality. But, on the other 

hand, these results must strike you as being very singular, and 

for that reason I shall now draw another conclusion from the 

theory, one which can easily be derived from the foregoing con-

siderations, and which has been most elegantly confirmed by 

experiment. 

In Section 6 we derived the theorem of the addition of veloc-

ities in one direction in the form which also results from the 

hypotheses of classical mechanics. This theorem can also be de-

duced readily from the Galilei transformation (Section 11). In 

place of the man walking inside the carriage, we introduce a 

point moving relatively to the co-ordinate system K� in accor-

dance with the equation 

x � wt�. 

By means of the first and fourth equations of the Galilei trans-

formation we can express x� and t� in terms of x and t, and we 

then obtain 

x � (v � w)t. 

This equation expresses nothing else than the law of motion 

of the point with reference to the system K (of the man with 
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reference to the embankment). We denote this velocity by the 

symbol W, and we then obtain, as in Section 6, 

W � v � w . . . (A). 

But we can carry out this consideration just as well on the 

basis of the theory of relativity. In the equation 

x� � wt� 

we must then express x� and t� in terms of x and t, making use 

of the first and fourth equations of the Lorentz transformation. 

Instead of the equation (A) we then obtain the equation 

v � w
W �� . . . (B),vw

1 � ��
2c 

which corresponds to the theorem of addition for velocities in 

one direction according to the theory of relativity. The question 

now arises as to which of these two theorems is the better in ac-

cord with experience. On this point we are enlightened by a 

most important experiment which the brilliant physicist Fizeau 

performed more than half a century ago, and which has been 

repeated since then by some of the best experimental physicists, 

so that there can be no doubt about its result. The experiment is 

concerned with the following question. Light travels in a mo-

tionless liquid with a particular velocity w. How quickly does 

it travel in the direction of the arrow in the tube T (see the ac-

companying diagram, Fig. 3) when the liquid above mentioned 

is flowing through the tube with a velocity v? 

T 

Fig. 3 
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In accordance with the principle of relativity we shall certainly 

have to take for granted that the propagation of light always 

takes place with the same velocity w with respect to the liquid, 

whether the latter is in motion with reference to other bodies or 

not. The velocity of light relative to the liquid and the velocity of 

the latter relative to the tube are thus known, and we require the 

velocity of light relative to the tube. 

It is clear that we have the problem of Section 6 again before 

us. The tube plays the part of the railway embankment or of the 

co-ordinate system K, the liquid plays the part of the carriage or 

of the co-ordinate system K�, and finally, the light plays the 

part of the man walking along the carriage, or of the moving 

point in the present section. If we denote the velocity of the 

light relative to the tube by W, then this is given by the equation 

(A) or (B), according as the Galilei transformation or the Lorentz 

transformation corresponds to the facts. Experiment1 decides in 

favour of equation (B) derived from the theory of relativity, and 

the agreement is, indeed, very exact. According to recent and 

most excellent measurements by Zee-man, the influence of the 

velocity of flow v on the propagation of light is represented by 

formula (B) to within one per cent. 

Nevertheless we must now draw attention to the fact that a 

theory of this phenomenon was given by H. A. Lorentz long 

before the statement of the theory of relativity. This theory was 

of a purely electrodynamical nature, and was obtained by the 

use of particular hypotheses as to the electromagnetic structure 

of matter. This circumstance, however, does not in the least di-

minish the conclusiveness of the experiment as a crucial test 

in favour of the theory of relativity, for the electrodynamics of 

Maxwell-Lorentz, on which the original theory was based, in 

1 c1 Fizeau found W � w � v �1 � ���, where n � �� is the index of refraction 
2 wn 

vw
of the liquid. On the other hand, owing to the smallness of �� as compared 

2c 

� �vw
with 1, we can replace (B) in the first place by W � w � v 1 � �� , or to 

2c 
1

the same order of approximation by w � v �1 � ���, which agrees with Fizeau’s 
2

result. 
n 
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no way opposes the theory of relativity. Rather has the latter 

been developed from electrodynamics as an astoundingly sim-

ple combination of generalisation of the hypotheses, formerly 

independent of each other, on which electrodynamics was 

built. 



fourteen 
The Heuristic Value of the 

Theory of Relativity 

Our train of thought in the foregoing pages can be epitomised 

in the following manner. Experience has led to the conviction 

that, on the one hand, the principle of relativity holds true and 

that on the other hand the velocity of transmission of light 

in vacuo has to be considered equal to a constant c. By uniting 

these two postulates we obtained the law of transformation for 

the rectangular co-ordinates x, y, z and the time t of the events 

which constitute the processes of nature. In this connection we 

did not obtain the Galilei transformation, but, differing from 

classical mechanics, the Lorentz transformation. 

The law of transmission of light, the acceptance of which is 

justified by our actual knowledge, played an important part 

in this process of thought. Once in possession of the Lorentz 

transformation, however, we can combine this with the princi-

ple of relativity, and sum up the theory thus: 

Every general law of nature must be so constituted that it is 

transformed into a law of exactly the same form when, in-

stead of the space-time variables x, y, z, t of the original co-

ordinate system K, we introduce new space-time variables 

x�, y�, z�, t� of a co-ordinate system K�. In this connection the 

relation between the ordinary and the accented magnitudes is 

given by the Lorentz transformation. Or in brief: General laws 

of nature are co-variant with respect to Lorentz transforma-

tions. 

This is a definite mathematical condition that the theory of 

relativity demands of a natural law, and in virtue of this, the 

theory becomes a valuable heuristic aid in the search for general 
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laws of nature. If a general law of nature were to be found 

which did not satisfy this condition, then at least one of the two 

fundamental assumptions of the theory would have been dis-

proved. Let us now examine what general results the latter the-

ory has hitherto evinced. 



fifteen 
General Results of the Theory 

It is clear from our previous considerations that the (special) the-

ory of relativity has grown out of electrodynamics and optics. In 

these fields it has not appreciably altered the predictions of the-

ory, but it has considerably simplified the theoretical structure, 

i.e. the derivation of laws, and—what is incomparably more 

important—it has considerably reduced the number of indepen-

dent hypotheses forming the basis of theory. The special theory 

of relativity has rendered the Maxwell-Lorentz theory so plausi-

ble, that the latter would have been generally accepted by physi-

cists even if experiment had decided less unequivocally in its 

favour. 

Classical mechanics required to be modified before it could 

come into line with the demands of the special theory of rela-

tivity. For the main part, however, this modification affects 

only the laws for rapid motions, in which the velocities of mat-

ter v are not very small as compared with the velocity of light. 

We have experience of such rapid motions only in the case of 

electrons and ions; for other motions the variations from the 

laws of classical mechanics are too small to make themselves 

evident in practice. We shall not consider the motion of stars 

until we come to speak of the general theory of relativity. In 

accordance with the theory of relativity the kinetic energy of a 

material point of mass m is no longer given by the well-known 

expression 

m 
2 

�
v 
�
2 

, 
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but by the expression 

mc2 
. 

�2v�1 � ��
c2 

This expression approaches infinity as the velocity v approaches 

the velocity of light c. The velocity must therefore always re-

main less than c, however great may be the energies used to pro-

duce the acceleration. If we develop the expression for the kinetic 

energy in the form of a series, we obtain 

4v2 3 v 
mc2 � m ��� �� m ��� 
 
 

  

2 8 c2 

2v
When �� is small compared with unity, the third of these 

c2 

terms is always small in comparison with the second, which last 

is alone considered in classical mechanics. The first term mc2 

does not contain the velocity, and requires no consideration if 

we are only dealing with the question as to how the energy of a 

point-mass depends on the velocity. We shall speak of its essen-

tial significance later. 

The most important result of a general character to which 

the special theory of relativity has led is concerned with the 

conception of mass. Before the advent of relativity, physics 

recognised two conservation laws of fundamental importance, 

namely, the law of the conservation of energy and the law of 

the conservation of mass; these two fundamental laws ap-

peared to be quite independent of each other. By means of the 

theory of relativity they have been united into one law. We shall 

now briefly consider how this unification came about, and what 

meaning is to be attached to it. 

The principle of relativity requires that the law of the conser-

vation of energy should hold not only with reference to a co-

ordinate system K, but also with respect to every co-ordinate 

system K� which is in a state of uniform motion of translation 

relative to K, or, briefly, relative to every “Galileian” system of 
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co-ordinates. In contrast to classical mechanics, the Lorentz 

transformation is the deciding factor in the transition from one 

such system to another. 

By means of comparatively simple considerations we are led 

to draw the following conclusion from these premises, in con-

junction with the fundamental equations of the electrodynam-

ics of Maxwell: A body moving with the velocity v, which 

absorbs1 an amount of energy E
0 

in the form of radiation with-

out suffering an alteration in velocity in the process, has, as 

a consequence, its energy increased by an amount 

E
0 . 

�2v�1 � ��
c2 

In consideration of the expression given above for the kinetic 

energy of the body, the required energy of the body comes out 

to be 

E
0m � �� c2� c2 �

. 

�2v�1 � ��
c2 

Thus the body has the same energy as a body of mass 
E

0m � �� moving with the velocity v. Hence we can say: If a � c2 � 
body takes up an amount of energy E

0
, then its inertial mass 

E
0increases by an amount ��; the inertial mass of a body is not 

c2 

a constant, but varies according to the change in the energy of 

the body. The inertial mass of a system of bodies can even be re-

garded as a measure of its energy. The law of the conservation 

of the mass of a system becomes identical with the law of the 

conservation of energy, and is only valid provided that the 

1 E
0 

is the energy taken up, as judged from a co-ordinate system moving with 

the body. 
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system neither takes up nor sends out energy. Writing the ex-

pression for the energy in the form 

mc2 � E
0 , 

�2v�1 � ��
c2 

we see that the term mc2, which has hitherto attracted our at-

tention, is nothing else than the energy possessed by the body2 

before it absorbed the energy E
0
. 

A direct comparison of this relation with experiment is not 

possible at the present time (1920), owing to the fact that the 

changes in energy E
0 

to which we can subject a system are not 

large enough to make themselves perceptible as a change in the 
E0inertial mass of the system. �� is too small in comparison with 
c2 

the mass m, which was present before the alteration of the en-

ergy. It is owing to this circumstance that classical mechanics was 

able to establish successfully the conservation of mass as a law of 

independent validity. 

Let me add a final remark of a fundamental nature. The suc-

cess of the Faraday-Maxwell interpretation of electromagnetic 

action at a distance resulted in physicists becoming convinced 

that there are no such things as instantaneous actions at a dis-

tance (not involving an intermediary medium) of the type of 

Newton’s law of gravitation. According to the theory of relativ-

ity, action at a distance with the velocity of light always takes 

the place of instantaneous action at a distance or of action at 

a distance with an infinite velocity of transmission. This is con-

nected with the fact that the velocity c plays a fundamental rôle 

in this theory. In Part II we shall see in what way this result be-

comes modified in the general theory of relativity. 

2 As judged from a co-ordinate system moving with the body. 



sixteen 
Experience and the Special Theory 

of Relativity 

To what extent is the special theory of relativity supported by 

experience? This question is not easily answered for the reason 

already mentioned in connection with the fundamental experi-

ment of Fizeau. The special theory of relativity has crystallised 

out from the Maxwell-Lorentz theory of electromagnetic phe-

nomena. Thus all facts of experience which support the electro-

magnetic theory also support the theory of relativity. As being 

of particular importance, I mention here the fact that the theory 

of relativity enables us to predict the effects produced on the 

light reaching us from the fixed stars. These results are ob-

tained in an exceedingly simple manner, and the effects indi-

cated, which are due to the relative motion of the earth with 

reference to those fixed stars, are found to be in accord with ex-

perience. We refer to the yearly movement of the apparent posi-

tion of the fixed stars resulting from the motion of the earth 

round the sun (aberration), and to the influence of the radial 

components of the relative motions of the fixed stars with re-

spect to the earth on the colour of the light reaching us from 

them. The latter effect manifests itself in a slight displacement 

of the spectral lines of the light transmitted to us from a fixed star, 

as compared with the position of the same spectral lines when 

they are produced by a terrestrial source of light (Doppler princi-

ple). The experimental arguments in favour of the Maxwell-

Lorentz theory, which are at the same time arguments in favour of 

the theory of relativity, are too numerous to be set forth here. In 

reality they limit the theoretical possibilities to such an extent, 

that no other theory than that of Maxwell and Lorentz has been 

able to hold its own when tested by experience. 
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But there are two classes of experimental facts hitherto ob-

tained which can be represented in the Maxwell-Lorentz theory 

only by the introduction of an auxiliary hypothesis, which in 

itself—i.e. without making use of the theory of relativity— 

appears extraneous. 

It is known that cathode rays and the so-called �-rays emitted 

by radioactive substances consist of negatively electrified parti-

cles (electrons) of very small inertia and large velocity. By ex-

amining the deflection of these rays under the influence of 

electric and magnetic fields, we can study the law of motion of 

these particles very exactly. 

In the theoretical treatment of these electrons, we are faced 

with the difficulty that electrodynamic theory of itself is unable 

to give an account of their nature. For since electrical masses of 

one sign repel each other, the negative electrical masses consti-

tuting the electron would necessarily be scattered under the 

influence of their mutual repulsions, unless there are forces of 

another kind operating between them, the nature of which has 

hitherto remained obscure to us.1 If we now assume that the 

relative distances between the electrical masses constituting the 

electron remain unchanged during the motion of the electron 

(rigid connection in the sense of classical mechanics), we ar-

rive at a law of motion of the electron which does not agree 

with experience. Guided by purely formal points of view, 

H. A. Lorentz was the first to introduce the hypothesis that the 

form of the electron experiences a contraction in the direction 

of motion in consequence of that motion, the contracted length 

v2 
being proportional to the expression �1 � ���. This hypothesis, 

c2 

which is not justifiable by any electrodynamical facts, supplies 

us then with that particular law of motion which has been con-

firmed with great precision in recent years. 

The theory of relativity leads to the same law of motion, 

without requiring any special hypothesis whatsoever as to the 

structure and the behaviour of the electron. We arrived at a 

1 The general theory of relativity renders it likely that the electrical masses of an 

electron are held together by gravitational forces. 
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similar conclusion of Section 13 in connection with the experi-

ment of Fizeau, the result of which is foretold by the theory of 

relativity without the necessity of drawing on hypotheses as to 

the physical nature of the liquid. 

The second class of facts to which we have alluded has refer-

ence to the question whether or not the motion of the earth 

in space can be made perceptible in terrestrial experiments. 

We have already remarked in Section 5 that all attempts of this 

nature led to a negative result. Before the theory of relativity 

was put forward, it was difficult to become reconciled to this 

negative result, for reasons now to be discussed. The inherited 

prejudices about time and space did not allow any doubt to 

arise as to the prime importance of the Galileian transforma-

tion for changing over from one body of reference to another. 

Now assuming that the Maxwell-Lorentz equations hold for 

a reference-body K, we then find that they do not hold for a 

reference-body K� moving uniformly with respect to K, if we as-

sume that the relations of the Galileian transformation exist be-

tween the co-ordinates of K and K�. It thus appears that, of all 

Galileian co-ordinate systems, one (K) corresponding to a par-

ticular state of motion is physically unique. This result was in-

terpreted physically by regarding K as at rest with respect to a 

hypothetical æther of space. On the other hand, all co-ordinate 

systems K� moving relatively to K were to be regarded as in mo-

tion with respect to the æther. To this motion of K� against the 

æther (“æther-drift” relative to K�) were attributed the more 

complicated laws which were supposed to hold relative to K�. 
Strictly speaking, such an æther-drift ought also to be assumed 

relative to the earth, and for a long time the efforts of physicists 

were devoted to attempts to detect the existence of an æther-

drift at the earth’s surface. 

In one of the most notable of these attempts Michelson devised 

a method which appears as though it must be decisive. Imagine 

two mirrors so arranged on a rigid body that the reflecting sur-

faces face each other. A ray of light requires a perfectly definite 

time T to pass from one mirror to the other and back again, if the 

whole system be at rest with respect to the æther. It is found by 

calculation, however, that a slightly different time T� is required 
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for this process, if the body, together with the mirrors, be moving 

relatively to the æther. And yet another point: it is shown by cal-

culation that for a given velocity v with reference to the æther, 

this time T� is different when the body is moving perpendicularly 

to the planes of the mirrors from that resulting when the motion 

is parallel to these planes. Although the estimated difference be-

tween these two times is exceedingly small, Michelson and Mor-

ley performed an experiment involving interference in which this 

difference should have been clearly detectable. But the experi-

ment gave a negative result—a fact very perplexing to physicists. 

Lorentz and FitzGerald rescued the theory from this difficulty by 

assuming that the motion of the body relative to the æther pro-

duces a contraction of the body in the direction of motion, the 

amount of contraction being just sufficient to compensate for the 

difference in time mentioned above. Comparison with the discus-

sion in Section 12 shows that also from the standpoint of the 

theory of relativity this solution of the difficulty was the right 

one. But on the basis of the theory of relativity the method of in-

terpretation is incomparably more satisfactory. According to this 

theory there is no such thing as a “specially favoured” (unique) 

co-ordinate system to occasion the introduction of the æther-

idea, and hence there can be no æther-drift, nor any experiment 

with which to demonstrate it. Here the contraction of moving 

bodies follows from the two fundamental principles of the the-

ory, without the introduction of particular hypotheses; and as the 

prime factor involved in this contraction we find, not the motion 

in itself, to which we cannot attach any meaning, but the motion 

with respect to the body of reference chosen in the particular case 

in point. Thus for a co-ordinate system moving with the earth 

the mirror system of Michelson and Morley is not shortened, but 

it is shortened for a co-ordinate system which is at rest relatively 

to the sun. 



seventeen 
Minkowski’s Four-Dimensional Space 

The non-mathematician is seized by a mysterious shuddering 

when he hears of “four-dimensional” things, by a feeling not 

unlike that awakened by thoughts of the occult. And yet there is 

no more common-place statement than that the world in which 

we live is a four-dimensional space-time continuum. 

Space is a three-dimensional continuum. By this we mean 

that it is possible to describe the position of a point (at rest) by 

means of three numbers (co-ordinates) x, y, z, and that there is 

an indefinite number of points in the neighbourhood of this one, 

the position of which can be described by co-ordinates such as 

x
1
, y

1
, z

1
, which may be as near as we choose to the respective 

values of the co-ordinates x, y, z of the first point. In virtue of 

the latter property we speak of a “continuum,” and owing to 

the fact that there are three co-ordinates we speak of it as being 

“three-dimensional.” 

Similarly, the world of physical phenomena which was briefly 

called “world” by Minkowski is naturally four-dimensional in 

the space-time sense. For it is composed of individual events, 

each of which is described by four numbers, namely, three space 

co-ordinates x, y, z and a time co-ordinate, the time-value t. The 

“world” is in this sense also a continuum; for to every event there 

are as many “neighbouring” events (realised or at least thinkable) 

as we care to choose, the co-ordinates x
1
, y

1
, z

1
, t

1 
of which differ 

by an indefinitely small amount from those of the event x, y, z, t 

originally considered. That we have not been accustomed to re-

gard the world in this sense as a four-dimensional continuum is 

due to the fact that in physics, before the advent of the theory of 

relativity, time played a different and more independent rôle, as 
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compared with the space co-ordinates. It is for this reason that 

we have been in the habit of treating time as an independent 

continuum. As a matter of fact, according to classical mechan-

ics, time is absolute, i.e. it is independent of the position and the 

condition of motion of the system of co-ordinates. We see this 

expressed in the last equation of the Galileian transformation 

(t� � t). 

The four-dimensional mode of consideration of the “world” 

is natural on the theory of relativity, since according to this the-

ory time is robbed of its independence. This is shown by the 

fourth equation of the Lorentz transformation: 

v 
t � �� x 

c2
.t���� 

v2

�1 � � 
c2 

Moreover, according to this equation the time difference �t� of 

two events with respect to K� does not in general vanish, even 

when the time difference �t of the same events with reference to 

K vanishes. Pure “space-distance” of two events with respect 

to K results in “time-distance” of the same events with re-

spect to K�. But the discovery of Minkowski, which was of im-

portance for the formal development of the theory of relativity, 

does not lie here. It is to be found rather in the fact of his recog-

nition that the four-dimensional space-time continuum of the 

theory of relativity, in its most essential formal properties, 

shows a pronounced relationship to the three-dimensional con-

tinuum of Euclidean geometrical space.1 In order to give due 

prominence to this relationship, however, we must replace the 

usual time co-ordinate t by an imaginary magnitude ��1� . ct 

proportional to it. Under these conditions, the natural laws sat-

isfying the demands of the (special) theory of relativity assume 

mathematical forms, in which the time co-ordinate plays ex-

actly the same rôle as the three space co-ordinates. Formally, 

these four co-ordinates correspond exactly to the three space 

1 Cf. the somewhat more detailed discussion in Appendix 2. 



54 relativity 

co-ordinates in Euclidean geometry. It must be clear even to the 

non-mathematician that, as a consequence of this purely formal 

addition to our knowledge, the theory perforce gained clearness 

in no mean measure. 

These inadequate remarks can give the reader only a vague 

notion of the important idea contributed by Minkowski. With-

out it the general theory of relativity, of which the fundamental 

ideas are developed in the following pages, would perhaps have 

got no farther than its long clothes. Minkowski’s work is doubt-

less difficult of access to anyone inexperienced in mathematics, 

but since it is not necessary to have a very exact grasp of this 

work in order to understand the fundamental ideas of either the 

special or the general theory of relativity, I shall leave it here at 

present, and revert to it only towards the end of Part II. 



part ii  

THE GENERAL THEORY 
OF RELATIVITY 





eighteen 
Special and General 

Principle of Relativity 

The basal principle, which was the pivot of all our previous 

considerations, was the special principle of relativity, i.e. the 

principle of the physical relativity of all uniform motion. Let us 

once more analyse its meaning carefully. 

It was at all times clear that, from the point of view of the 

idea it conveys to us, every motion must be considered only as 

a relative motion. Returning to the illustration we have fre-

quently used of the embankment and the railway carriage, we 

can express the fact of the motion here taking place in the fol-

lowing two forms, both of which are equally justifiable: 

(a) The carriage is in motion relative to the embankment. 

(b) The embankment is in motion relative to the carriage. 

In (a) the embankment, in (b) the carriage, serves as the body 

of reference in our statement of the motion taking place. If it is 

simply a question of detecting or of describing the motion in-

volved, it is in principle immaterial to what reference-body we 

refer the motion. As already mentioned, this is self-evident, but 

it must not be confused with the much more comprehensive 

statement called “the principle of relativity,” which we have 

taken as the basis of our investigations. 

The principle we have made use of not only maintains that 

we may equally well choose the carriage or the embankment as 

our reference-body for the description of any event (for this, 

too, is self-evident). Our principle rather asserts what follows: If 

we formulate the general laws of nature as they are obtained 

from experience, by making use of 

(a) the embankment as reference-body, 

(b) the railway carriage as reference-body, 



58 relativity 

then these general laws of nature (e.g. the laws of mechanics or 

the law of the propagation of light in vacuo) have exactly the 

same form in both cases. This can also be expressed as follows: 

For the physical description of natural processes, neither of the 

reference-bodies K, K� is unique (lit. “specially marked out”) as 

compared with the other. Unlike the first, this latter statement 

need not of necessity hold a priori; it is not contained in the 

conceptions of “motion” and “reference-body” and derivable 

from them; only experience can decide as to its correctness or 

incorrectness. 

Up to the present, however, we have by no means maintained 

the equivalence of all bodies of reference K in connection with 

the formulation of natural laws. Our course was more on the 

following lines. In the first place, we started out from the as-

sumption that there exists a reference-body K, whose condition 

of motion is such that the Galileian law holds with respect to it: 

A particle left to itself and sufficiently far removed from all 

other particles moves uniformly in a straight line. With refer-

ence to K (Galileian reference-body) the laws of nature were 

to be as simple as possible. But in addition to K, all bodies of 

reference K� should be given preference in this sense, and they 

should be exactly equivalent to K for the formulation of natural 

laws, provided that they are in a state of uniform rectilinear and 

non-rotary motion with respect to K; all these bodies of refer-

ence are to be regarded as Galileian reference-bodies. The va-

lidity of the principle of relativity was assumed only for these 

reference-bodies, but not for others (e.g. those possessing mo-

tion of a different kind). In this sense we speak of the special 

principle of relativity, or special theory of relativity. 

In contrast to this we wish to understand by the “general 

principle of relativity” the following statement: All bodies of 

reference K, K�, etc., are equivalent for the description of natu-

ral phenomena (formulation of the general laws of nature), 

whatever may be their state of motion. But before proceeding 

farther, it ought to be pointed out that this formulation must be 

replaced later by a more abstract one, for reasons which will 

become evident at a later stage. 

Since the introduction of the special principle of relativity has 
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been justified, every intellect which strives after generalisation 

must feel the temptation to venture the step towards the general 

principle of relativity. But a simple and apparently quite reliable 

consideration seems to suggest that, for the present at any rate, 

there is little hope of success in such an attempt. Let us imagine 

ourselves transferred to our old friend the railway carriage, 

which is travelling at a uniform rate. As long as it is moving 

uniformly, the occupant of the carriage is not sensible of its mo-

tion, and it is for this reason that he can without reluctance in-

terpret the facts of the case as indicating that the carriage is at 

rest, but the embankment in motion. Moreover, according to 

the special principle of relativity, this interpretation is quite jus-

tified also from a physical point of view. 

If the motion of the carriage is now changed into a non-

uniform motion, as for instance by a powerful application of the 

brakes, then the occupant of the carriage experiences a corre-

spondingly powerful jerk forwards. The retarded motion is man-

ifested in the mechanical behaviour of bodies relative to the 

person in the railway carriage. The mechanical behaviour is dif-

ferent from that of the case previously considered, and for this 

reason it would appear to be impossible that the same mechani-

cal laws hold relatively to the non-uniformly moving carriage, 

as hold with reference to the carriage when at rest or in uniform 

motion. At all events it is clear that the Galileian law does not 

hold with respect to the non-uniformly moving carriage. Because 

of this, we feel compelled at the present juncture to grant a kind 

of absolute physical reality to non-uniform motion, in opposi-

tion to the general principle of relativity. But in what follows we 

shall soon see that this conclusion cannot be maintained. 



nineteen 
The Gravitational Field 

“If we pick up a stone and then let it go, why does it fall to the 

ground?” The usual answer to this question is: “Because it is at-

tracted by the earth.” Modern physics formulates the answer 

rather differently for the following reason. As a result of the 

more careful study of electromagnetic phenomena, we have 

come to regard action at a distance as a process impossible with-

out the intervention of some intermediary medium. If, for in-

stance, a magnet attracts a piece of iron, we cannot be content to 

regard this as meaning that the magnet acts directly on the iron 

through the intermediate empty space, but we are constrained to 

imagine—after the manner of Faraday—that the magnet always 

calls into being something physically real in the space around it, 

that something being what we call a “magnetic field.” In its turn 

this magnetic field operates on the piece of iron, so that the latter 

strives to move towards the magnet. We shall not discuss here the 

justification for this incidental conception, which is indeed a some-

what arbitrary one. We shall only mention that with its aid elec-

tromagnetic phenomena can be theoretically represented much 

more satisfactorily than without it, and this applies particularly 

to the transmission of electromagnetic waves. The effects of grav-

itation also are regarded in an analogous manner. 

The action of the earth on the stone takes place indirectly. 

The earth produces in its surroundings a gravitational field, 

which acts on the stone and produces its motion of fall. As we 

know from experience, the intensity of the action on a body di-

minishes according to a quite definite law, as we proceed farther 

and farther away from the earth. From our point of view this 

means: The law governing the properties of the gravitational 
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field in space must be a perfectly definite one, in order cor-

rectly to represent the diminution of gravitational action with 

the distance from operative bodies. It is something like this: The 

body (e.g. the earth) produces a field in its immediate neigh-

bourhood directly; the intensity and direction of the field at 

points farther removed from the body are thence determined by 

the law which governs the properties in space of the gravita-

tional fields themselves. 

In contrast to electric and magnetic fields, the gravitational 

field exhibits a most remarkable property, which is of funda-

mental importance for what follows. Bodies which are moving 

under the sole influence of a gravitational field receive an accel-

eration, which does not in the least depend either on the mate-

rial or on the physical state of the body. For instance, a piece of 

lead and a piece of wood fall in exactly the same manner in a 

gravitational field (in vacuo), when they start off from rest or 

with the same initial velocity. This law, which holds most accu-

rately, can be expressed in a different form in the light of the 

following consideration. 

According to Newton’s law of motion, we have 

(Force) � (inertial mass) 
 (acceleration), 

where the “inertial mass” is a characteristic constant of the ac-

celerated body. If now gravitation is the cause of the accelera-

tion, we then have 

(Force) � (gravitational mass) 
 (intensity of the 

gravitational field), 

where the “gravitational mass” is likewise a characteristic con-

stant for the body. From these two relations follows: 

(gravitational mass) (intensity of the 
(acceleration) ����

(inertial mass) gravitational field). 

If now, as we find from experience, the acceleration is to be 

independent of the nature and the condition of the body and 



62 relativity 

always the same for a given gravitational field, then the ratio of 

the gravitational to the inertial mass must likewise be the same 

for all bodies. By a suitable choice of units we can thus make this 

ratio equal to unity. We then have the following law: The gravi-

tational mass of a body is equal to its inertial mass. 

It is true that this important law had hitherto been recorded 

in mechanics, but it had not been interpreted. A satisfactory in-

terpretation can be obtained only if we recognise the following 

fact: The same quality of a body manifests itself according to 

circumstances as “inertia” or as “weight” (lit. “heaviness”). In 

the following section we shall show to what extent this is actu-

ally the case, and how this question is connected with the gen-

eral postulate of relativity. 



twenty 
The Equality of Inertial and Gravitational 

Mass as an Argument for the General 
Postulate of Relativity 

We imagine a large portion of empty space, so far removed 

from stars and other appreciable masses, that we have before us 

approximately the conditions required by the fundamental law 

of Galilei. It is then possible to choose a Galileian reference-

body for this part of space (world), relative to which points at 

rest remain at rest and points in motion continue permanently 

in uniform rectilinear motion. As reference-body let us imagine 

a spacious chest resembling a room with an observer inside 

who is equipped with apparatus. Gravitation naturally does not 

exist for this observer. He must fasten himself with strings to 

the floor, otherwise the slightest impact against the floor will 

cause him to rise slowly towards the ceiling of the room. 

To the middle of the lid of the chest is fixed externally a hook 

with rope attached, and now a “being” (what kind of a being is 

immaterial to us) begins pulling at this with a constant force. 

The chest together with the observer then begins to move “up-

wards” with a uniformly accelerated motion. In course of time 

their velocity will reach unheard-of values—provided that we 

are viewing all this from another reference-body which is not 

being pulled with a rope. 

But how does the man in the chest regard the process? The 

acceleration of the chest will be transmitted to him by the reac-

tion of the floor of the chest. He must therefore take up this 

pressure by means of his legs if he does not wish to be laid out 

full length on the floor. He is then standing in the chest in ex-

actly the same way as anyone stands in a room of a house on 

our earth. If he releases a body which he previously had in his 

hand, the acceleration of the chest will no longer be transmitted 
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to this body, and for this reason the body will approach the 

floor of the chest with an accelerated relative motion. The ob-

server will further convince himself that the acceleration of the 

body towards the floor of the chest is always of the same mag-

nitude, whatever kind of body he may happen to use for the 

experiment. 

Relying on his knowledge of the gravitational field (as it was 

discussed in the preceding section), the man in the chest will 

thus come to the conclusion that he and the chest are in a grav-

itational field which is constant with regard to time. Of course 

he will be puzzled for a moment as to why the chest does not 

fall in this gravitational field. Just then, however, he discovers 

the hook in the middle of the lid of the chest and the rope which 

is attached to it, and he consequently comes to the conclusion 

that the chest is suspended at rest in the gravitational field. 

Ought we to smile at the man and say that he errs in his con-

clusion? I do not believe we ought to if we wish to remain 

consistent; we must rather admit that his mode of grasping the 

situation violates neither reason nor known mechanical laws. 

Even though it is being accelerated with respect to the “Galileian 

space” first considered, we can nevertheless regard the chest as 

being at rest. We have thus good grounds for extending the prin-

ciple of relativity to include bodies of reference which are accel-

erated with respect to each other, and as a result we have gained 

a powerful argument for a generalised postulate of relativity. 

We must note carefully that the possibility of this mode of in-

terpretation rests on the fundamental property of the gravita-

tional field of giving all bodies the same acceleration, or, what 

comes to the same thing, on the law of the equality of inertial 

and gravitational mass. If this natural law did not exist, the man 

in the accelerated chest would not be able to interpret the be-

haviour of the bodies around him on the supposition of a grav-

itational field, and he would not be justified on the grounds of 

experience in supposing his reference-body to be “at rest.” 

Suppose that the man in the chest fixes a rope to the inner 

side of the lid, and that he attaches a body to the free end of the 

rope. The result of this will be to stretch the rope so that it will 

hang “vertically” downwards. If we ask for an opinion of the 
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cause of tension in the rope, the man in the chest will say: “The 

suspended body experiences a downward force in the gravita-

tional field, and this is neutralised by the tension of the rope; 

what determines the magnitude of the tension of the rope is the 

gravitational mass of the suspended body.” On the other hand, 

an observer who is poised freely in space will interpret the con-

dition of things thus: “The rope must perforce take part in the 

accelerated motion of the chest, and it transmits this motion to 

the body attached to it. The tension of the rope is just large 

enough to effect the acceleration of the body. That which deter-

mines the magnitude of the tension of the rope is the inertial 

mass of the body.” Guided by this example, we see that our ex-

tension of the principle of relativity implies the necessity of the 

law of the equality of inertial and gravitational mass. Thus we 

have obtained a physical interpretation of this law. 

From our consideration of the accelerated chest we see that 

a general theory of relativity must yield important results on 

the laws of gravitation. In point of fact, the systematic pursuit 

of the general idea of relativity has supplied the laws satisfied by 

the gravitational field. Before proceeding farther, however, I 

must warn the reader against a misconception suggested by these 

considerations. A gravitational field exists for the man in the 

chest, despite the fact that there was no such field for the co-

ordinate system first chosen. Now we might easily suppose that 

the existence of a gravitational field is always only an apparent 

one. We might also think that, regardless of the kind of gravita-

tional field which may be present, we could always choose an-

other reference-body such that no gravitational field exists with 

reference to it. This is by no means true for all gravitational 

fields, but only for those of quite special form. It is, for in-

stance, impossible to choose a body of reference such that, as 

judged from it, the gravitational field of the earth (in its en-

tirety) vanishes. 

We can now appreciate why that argument is not convincing, 

which we brought forward against the general principle of rela-

tivity at the end of Section 18. It is certainly true that the ob-

server in the railway carriage experiences a jerk forwards as 

a result of the application of the brake, and that he recognises 
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in this the non-uniformity of motion (retardation) of the car-

riage. But he is compelled by nobody to refer this jerk to a 

“real” acceleration (retardation) of the carriage. He might also 

interpret his experience thus: “My body of reference (the car-

riage) remains permanently at rest. With reference to it, how-

ever, there exists (during the period of application of the brakes) 

a gravitational field which is directed forwards and which is 

variable with respect to time. Under the influence of this field, 

the embankment together with the earth moves nonuniformly 

in such a manner that their original velocity in the backwards 

direction is continuously reduced.” 



twenty-one 
In What Respects Are the Foundations 

of Classical Mechanics and of the Special 
Theory of Relativity Unsatisfactory? 

We have already stated several times that classical mechanics 

starts out from the following law: Material particles sufficiently 

far removed from other material particles continue to move 

uniformly in a straight line or continue in a state of rest. We 

have also repeatedly emphasised that this fundamental law can 

only be valid for bodies of reference K which possess certain 

unique states of motion, and which are in uniform translational 

motion relative to each other. Relative to other reference-bodies 

K the law is not valid. Both in classical mechanics and in the 

special theory of relativity we therefore differentiate between 

reference-bodies K relative to which the recognised “laws of 

nature” can be said to hold, and reference-bodies K relative to 

which these laws do not hold. 

But no person whose mode of thought is logical can rest sat-

isfied with this condition of things. He asks: “How does it come 

that certain reference-bodies (or their states of motion) are 

given priority over other reference-bodies (or their states of mo-

tion)? What is the reason for this preference? In order to show 

clearly what I mean by this question, I shall make use of a com-

parison. 

I am standing in front of a gas range. Standing alongside of 

each other on the range are two pans so much alike that one 

may be mistaken for the other. Both are half full of water. I no-

tice that steam is being emitted continuously from the one pan, 

but not from the other. I am surprised at this, even if I have 

never seen either a gas range or a pan before. But if I now notice 

a luminous something of bluish colour under the first pan but 

not under the other, I cease to be astonished, even if I have never 
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before seen a gas flame. For I can only say that this bluish some-

thing will cause the emission of the steam, or at least possibly it 

may do so. If, however, I notice the bluish something in neither 

case, and if I observe that the one continuously emits steam 

whilst the other does not, then I shall remain astonished and 

dissatisfied until I have discovered some circumstance to which 

I can attribute the different behaviour of the two pans. 

Analogously, I seek in vain for a real something in classical 

mechanics (or in the special theory of relativity) to which I can 

attribute the different behaviour of bodies considered with re-

spect to the reference-systems K and K�.1 Newton saw this ob-

jection and attempted to invalidate it, but without success. But 

E. Mach recognised it most clearly of all, and because of this 

objection he claimed that mechanics must be placed on a new 

basis. It can only be got rid of by means of a physics which 

is comformable to the general principle of relativity, since the 

equations of such a theory hold for every body of reference, 

whatever may be its state of motion. 

1 The objection is of importance more especially when the state of motion of 

the reference-body is of such a nature that it does not require any external 

agency for its maintenance, e.g. in the case when the reference-body is rotating 

uniformly. 



twenty-two 
A Few Inferences from the General 

Principle of Relativity 

The considerations of Section 20 show that the general princi-

ple of relativity puts us in a position to derive properties of the 

gravitational field in a purely theoretical manner. Let us sup-

pose, for instance, that we know the space-time “course” for 

any natural process whatsoever, as regards the manner in which 

it takes place in the Galileian domain relative to a Galileian 

body of reference K. By means of purely theoretical operations 

(i.e. simply by calculation) we are then able to find how this 

known natural process appears, as seen from a reference-body 

K� which is accelerated relatively to K. But since a gravitational 

field exists with respect to this new body of reference K�, our 

consideration also teaches us how the gravitational field influ-

ences the process studied. 

For example, we learn that a body which is in a state of uni-

form rectilinear motion with respect to K (in accordance with 

the law of Galilei) is executing an accelerated and in general 

curvilinear motion with respect to the accelerated reference-

body K� (chest). This acceleration or curvature corresponds to 

the influence on the moving body of the gravitational field 

prevailing relatively to K�. It is known that a gravitational field 

influences the movement of bodies in this way, so that our con-

sideration supplies us with nothing essentially new. 

However, we obtain a new result of fundamental importance 

when we carry out the analogous consideration for a ray of light. 

With respect to the Galileian reference-body K, such a ray of 

light is transmitted rectilinearly with the velocity c. It can easily 

be shown that the path of the same ray of light is no longer a 

straight line when we consider it with reference to the accelerated 
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chest (reference-body K�). From this we conclude, that, in gen-

eral, rays of light are propagated curvilinearly in gravitational 

fields. In two respects this result is of great importance. 

In the first place, it can be compared with the reality. Although 

a detailed examination of the question shows that the curvature 

of light rays required by the general theory of relativity is only 

exceedingly small for the gravitational fields at our disposal in 

practice, its estimated magnitude for light rays passing the sun 

at grazing incidence is nevertheless 1.7 seconds of arc. This 

ought to manifest itself in the following way. As seen from the 

earth, certain fixed stars appear to be in the neighbourhood of 

the sun, and are thus capable of observation during a total eclipse 

of the sun. At such times, these stars ought to appear to be dis-

placed outwards from the sun by an amount indicated above, as 

compared with their apparent position in the sky when the sun 

is situated at another part of the heavens. The examination of 

the correctness or otherwise of this deduction is a problem of 

the greatest importance, the early solution of which is to be ex-

pected of astronomers.1 

In the second place our result shows that, according to the 

general theory of relativity, the law of the constancy of the ve-

locity of light in vacuo, which constitutes one of the two fun-

damental assumptions in the special theory of relativity and to 

which we have already frequently referred, cannot claim any 

unlimited validity. A curvature of rays of light can only take 

place when the velocity of propagation of light varies with posi-

tion. Now we might think that as a consequence of this, the 

special theory of relativity and with it the whole theory of rela-

tivity would be laid in the dust. But in reality this is not the 

case. We can only conclude that the special theory of relativity 

cannot claim an unlimited domain of validity; its results hold 

only so long as we are able to disregard the influences of gravi-

tational fields on the phenomena (e.g. of light). 

1 By means of the star photographs of two expeditions equipped by a Joint 

Committee of the Royal and Royal Astronomical Societies, the existence of the 

deflection of light demanded by theory was first confirmed during the solar 

eclipse of 29th May, 1919. (Cf. Appendix 3.) 
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Since it has often been contended by opponents of the theory 

of relativity that the special theory of relativity is overthrown 

by the general theory of relativity, it is perhaps advisable to 

make the facts of the case clearer by means of an appropriate 

comparison. Before the development of electrodynamics the laws 

of electrostatics were looked upon as the laws of electricity. At 

the present time we know that electric fields can be derived cor-

rectly from electrostatic considerations only for the case, which 

is never strictly realised, in which the electrical masses are quite 

at rest relatively to each other, and to the co-ordinate system. 

Should we be justified in saying that for this reason electrostat-

ics is overthrown by the field-equations of Maxwell in electro-

dynamics? Not in the least. Electrostatics is contained in 

electrodynamics as a limiting case; the laws of the latter lead di-

rectly to those of the former for the case in which the fields are 

invariable with regard to time. No fairer destiny could be allot-

ted to any physical theory, than that it should of itself point out 

the way to the introduction of a more comprehensive theory, in 

which it lives on as a limiting case. 

In the example of the transmission of light just dealt with, we 

have seen that the general theory of relativity enables us to de-

rive theoretically the influence of a gravitational field on the 

course of natural processes, the laws of which are already known 

when a gravitational field is absent. But the most attractive 

problem, to the solution of which the general theory of relativ-

ity supplies the key, concerns the investigation of the laws satis-

fied by the gravitational field itself. Let us consider this for a 

moment. 

We are acquainted with space-time domains which behave 

(approximately) in a “Galileian” fashion under suitable choice 

of reference-body, i.e. domains in which gravitational fields are 

absent. If we now refer such a domain to a reference-body K� 
possessing any kind of motion, then relative to K� there exists a 

gravitational field which is variable with respect to space and 

time.2 The character of this field will of course depend on the mo-

tion chosen for K�. According to the general theory of relativity, 

2 This follows from a generalisation of the discussion in Section 20. 
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the general law of the gravitational field must be satisfied for all 

gravitational fields obtainable in this way. Even though by no 

means all gravitational fields can be produced in this way, yet we 

may entertain the hope that the general law of gravitation will be 

derivable from such gravitational fields of a special kind. This 

hope has been realised in the most beautiful manner. But be-

tween the clear vision of this goal and its actual realisation it was 

necessary to surmount a serious difficulty, and as this lies deep at 

the root of things, I dare not withhold it from the reader. We re-

quire to extend our ideas of the space-time continuum still farther. 



twenty-three 
Behaviour of Clocks and Measuring-Rods 

on a Rotating Body of Reference 

Hitherto I have purposely refrained from speaking about the 

physical interpretation of space- and time-data in the case of the 

general theory of relativity. As a consequence, I am guilty of a 

certain slovenliness of treatment, which, as we know from the 

special theory of relativity, is far from being unimportant and 

pardonable. It is now high time that we remedy this defect; but I 

would mention at the outset, that this matter lays no small claims 

on the patience and on the power of abstraction of the reader. 

We start off again from quite special cases, which we have 

frequently used before. Let us consider a space-time domain in 

which no gravitational field exists relative to a reference-body 

K whose state of motion has been suitably chosen. K is then a 

Galileian reference-body as regards the domain considered, and 

the results of the special theory of relativity hold relative to K. 

Let us suppose the same domain referred to a second body of 

reference K�, which is rotating uniformly with respect to K. In 

order to fix our ideas, we shall imagine K� to be in the form of 

a plane circular disc, which rotates uniformly in its own plane 

about its centre. An observer who is sitting eccentrically on the 

disc K� is sensible of a force which acts outwards in a radial di-

rection, and which would be interpreted as an effect of inertia 

(centrifugal force) by an observer who was at rest with respect 

to the original reference-body K. But the observer on the disc 

may regard his disc as a reference-body which is “at rest”; on 

the basis of the general principle of relativity he is justified in 

doing this. The force acting on himself, and in fact on all other 

bodies which are at rest relative to the disc, he regards as the ef-

fect of a gravitational field. Nevertheless, the space-distribution 
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of this gravitational field is of a kind that would not be possible 

on Newton’s theory of gravitation.1 But since the observer be-

lieves in the general theory of relativity, this does not disturb 

him; he is quite in the right when he believes that a general law 

of gravitation can be formulated—a law which not only ex-

plains the motion of the stars correctly, but also the field of 

force experienced by himself. 

The observer performs experiments on his circular disc with 

clocks and measuring-rods. In doing so, it is his intention to ar-

rive at exact definitions for the signification of time- and space-

data with reference to the circular disc K�, these definitions 

being based on his observations. What will be his experience in 

this enterprise? 

To start with, he places one of two identically constructed 

clocks at the centre of the circular disc, and the other on the 

edge of the disc, so that they are at rest relative to it. We now 

ask ourselves whether both clocks go at the same rate from the 

standpoint of the non-rotating Galileian reference-body K. As 

judged from this body, the clock at the centre of the disc has no 

velocity, whereas the clock at the edge of the disc is in motion 

relative to K in consequence of the rotation. According to a re-

sult obtained in Section 12, it follows that the latter clock goes 

at a rate permanently slower than that of the clock at the centre 

of the circular disc, i.e. as observed from K. It is obvious that 

the same effect would be noted by an observer whom we will 

imagine sitting alongside his clock at the centre of the circular 

disc. Thus on our circular disc, or, to make the case more gen-

eral, in every gravitational field, a clock will go more quickly or 

less quickly, according to the position in which the clock is sit-

uated (at rest). For this reason it is not possible to obtain a rea-

sonable definition of time with the aid of clocks which are 

arranged at rest with respect to the body of reference. A similar 

difficulty presents itself when we attempt to apply our earlier 

definition of simultaneity in such a case, but I do not wish to go 

any farther into this question. 

1 The field disappears at the centre of the disc and increases proportionally to 

the distance from the centre as we proceed outwards. 
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Moreover, at this stage the definition of the space coordinates 

also presents insurmountable difficulties. If the observer applies 

his standard measuring-rod (a rod which is short as compared 

with the radius of the disc) tangentially to the edge of the disc, 

then, as judged from the Galileian system, the length of this rod 

will be less than 1, since, according to Section 12, moving bod-

ies suffer a shortening in the direction of the motion. On the 

other hand, the measuring-rod will not experience a shortening 

in length, as judged from K, if it is applied to the disc in the di-

rection of the radius. If, then, the observer first measures the 

circumference of the disc with his measuring-rod and then the 

diameter of the disc, on dividing the one by the other, he will 

not obtain as quotient the familiar number � � 3.14 . . . , but a  

larger number,2 whereas of course, for a disc which is at rest 

with respect to K, this operation would yield � exactly. This 

proves that the propositions of Euclidean geometry cannot hold 

exactly on the rotating disc, nor in general in a gravitational 

field, at least if we attribute the length 1 to the rod in all posi-

tions and in every orientation. Hence the idea of a straight line 

also loses its meaning. We are therefore not in a position to de-

fine exactly the co-ordinates x, y, z relative to the disc by means 

of the method used in discussing the special theory, and as long 

as the co-ordinates and times of events have not been defined, 

we cannot assign an exact meaning to the natural laws in which 

these occur. 

Thus all our previous conclusions based on general relativity 

would appear to be called in question. In reality we must make 

a subtle detour in order to be able to apply the postulate of gen-

eral relativity exactly. I shall prepare the reader for this in the 

following paragraphs. 

2 Throughout this consideration we have to use the Galileian (non-rotating) 

system K as reference-body, since we may only assume the validity of the re-

sults of the special theory of relativity relative to K (relative to K� a gravita-

tional field prevails). 



twenty-four 
Euclidean and Non-Euclidean Continuum 

The surface of a marble table is spread out in front of me. I can 

get from any one point on this table to any other point by pass-

ing continuously from one point to a “neighbouring” one, and 

repeating this process a (large) number of times, or, in other 

words, by going from point to point without executing “jumps.” 

I am sure the reader will appreciate with sufficient clearness 

what I mean here by “neighbouring” and by “jumps” (if he is 

not too pedantic). We express this property of the surface by 

describing the latter as a continuum. 

Let us now imagine that a large number of little rods of equal 

length have been made, their lengths being small compared 

with the dimensions of the marble slab. When I say they are of 

equal length, I mean that one can be laid on any other without 

the ends overlapping. We next lay four of these little rods on 

the marble slab so that they constitute a quadrilateral figure (a 

square), the diagonals of which are equally long. To ensure the 

equality of the diagonals, we make use of a little testing-rod. To 

this square we add similar ones, each of which has one rod in 

common with the first. We proceed in like manner with each of 

these squares until finally the whole marble slab is laid out with 

squares. The arrangement is such, that each side of a square be-

longs to two squares and each corner to four squares. 

It is a veritable wonder that we can carry out this business 

without getting into the greatest difficulties. We only need to 

think of the following. If at any moment three squares meet at a 

corner, then two sides of the fourth square are already laid, and, 

as a consequence, the arrangement of the remaining two sides of 

the square is already completely determined. But I am now no 
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longer able to adjust the quadrilateral so that its diagonals may 

be equal. If they are equal of their own accord, then this is an 

especial favour of the marble slab and of the little rods, about 

which I can only be thankfully surprised. We must needs experi-

ence many such surprises if the construction is to be successful. 

If everything has really gone smoothly, then I say that the 

points of the marble slab constitute a Euclidean continuum 

with respect to the little rod, which has been used as a “distance” 

(line-interval). By choosing one corner of a square as “origin,” 

I can characterize every other corner of a square with reference 

to this origin by means of two numbers. I only need state how 

many rods I must pass over when, starting from the origin, I pro-

ceed towards the “right” and then “upwards,” in order to arrive 

at the corner of the square under consideration. These two num-

bers are then the “Cartesian co-ordinates” of this corner with 

reference to the “Cartesian co-ordinate system” which is deter-

mined by the arrangement of little rods. 

By making use of the following modification of this abstract 

experiment, we recognize that there must also be cases in which 

the experiment would be unsuccessful. We shall suppose that 

the rods “expand” by an amount proportional to the increase 

of temperature. We heat the central part of the marble slab, but 

not the periphery, in which case two of our little rods can still 

be brought into coincidence at every position on the table. But 

our construction of squares must necessarily come into disorder 

during the heating, because the little rods on the central region 

of the table expand, whereas those on the outer part do not. 

With reference to our little rods—defined as unit lengths— 

the marble slab is no longer a Euclidean continuum, and we are 

also no longer in the position of defining Cartesian co-ordinates 

directly with their aid, since the above construction can no 

longer be carried out. But since there are other things which are 

not influenced in a similar manner to the little rods (or perhaps 

not at all) by the temperature of the table, it is possible quite nat-

urally to maintain the point of view that the marble slab is a “Eu-

clidean continuum.” This can be done in a satisfactory manner 

by making a more subtle stipulation about the measurement or 

the comparison of lengths. 
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But if rods of every kind (i.e. of every material) were to be-

have in the same way as regards the influence of temperature 

when they are on the variably heated marble slab, and if we had 

no other means of detecting the effect of temperature than the 

geometrical behaviour of our rods in experiments analogous to 

the one described above, then our best plan would be to assign 

the distance one to two points on the slab, provided that the 

ends of one of our rods could be made to coincide with these 

two points; for how else should we define the distance without 

our proceeding being in the highest measure grossly arbitrary? 

The method of Cartesian co-ordinates must then be discarded, 

and replaced by another which does not assume the validity of 

Euclidean geometry for rigid bodies.1 The reader will notice 

that the situation depicted here corresponds to the one brought 

about by the general postulate of relativity (Section 23). 

1 Mathematicians have been confronted with our problem in the following 

form. If we are given a surface (e.g. an ellipsoid) in Euclidean three-dimensional 

space, then there exists for this surface a two-dimensional geometry, just as 

much as for a plane surface. Gauss undertook the task of treating this two-

dimensional geometry from first principles, without making use of the fact that 

the surface belongs to a Euclidean continuum of three dimensions. If we imag-

ine constructions to be made with rigid rods in the surface (similar to that above 

with the marble slab), we should find that different laws hold for these from 

those resulting on the basis of Euclidean plane geometry. The surface is not a 

Euclidean continuum with respect to the rods, and we cannot define Cartesian 

co-ordinates in the surface. Gauss indicated the principles according to which 

we can treat the geometrical relationships in the surface, and thus pointed 

out the way to the method of Riemann of treating multi-dimensional, non-

Euclidean continua. Thus it is that mathematicians long ago solved the formal 

problems to which we are led by the general postulate of relativity. 



twenty-five 
Gaussian Co-ordinates 

According to Gauss, this combined analytical and geometrical 

mode of handling the problem can be arrived at in the following 

way. We imagine a system of arbitrary curves (see Fig. 4) drawn 

on the surface of the table. These we designate as ucurves, and 

we indicate each of them by means of a number. The curves 

u � 1, u � 2 and u � 3 are drawn in the diagram. Between the 

curves u � 1 and u � 2 we must imagine an infinitely large num-

ber to be drawn, all of which correspond to real numbers lying 

between 1 and 2. We have then a system of u-curves, and this 

“infinitely dense” system covers the whole surface of the table. 

These u-curves must not intersect each other, and through each 

point of the surface one and only one curve must pass. Thus a 

perfectly definite value of u belongs to every point on the surface 

of the marble slab. In like manner we imagine a system of v-

curves drawn on the surface. These satisfy the same conditions 

as the u-curves, they are provided with numbers in a correspon-

P v � 2 
v � 3 

u � 3 

u � 2 

u � 1 

v � 1 

Fig. 4 
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ding manner, and they may likewise be of arbitrary shape. It fol-

lows that a value of u and a value of v belong to every point 

on the surface of the table. We call these two numbers the co-

ordinates of the surface of the table (Gaussian co-ordinates). For 

example, the point P in the diagram has the Gaussian co-

ordinates u � 3, v � 1. Two neighbouring points P and P� on the 

surface then correspond to the co-ordinates 

P: u, v 

P�: u � du, v � dv, 

where du and dv signify very small numbers. In a similar man-

ner we may indicate the distance (line-interval) between P and 

P�, as measured with a little rod, by means of the very small 

number ds. Then according to Gauss we have 

ds2 � g
11

du2 � 2g
12

dudv � g
22

dv2, 

where g
11

, g
12

, g
22

, are magnitudes which depend in a perfectly 

definite way to u and v. The magnitudes g
11

, g
12 

and g
22 

deter-

mine the behaviour of the rods relative to the u-curves and v-

curves, and thus also relative to the surface of the table. For the 

case in which the points of the surface considered form a Euclid-

ean continuum with reference to the measuring-rods, but only in 

this case, it is possible to draw the u-curves and v-curves and to 

attach numbers to them, in such a manner, that we simply have: 

ds2 � du2 � dv2. 

Under these conditions, the u-curves and v-curves are straight 

lines in the sense of Euclidean geometry, and they are perpendi-

cular to each other. Here the Gaussian co-ordinates are simply 

Cartesian ones. It is clear that Gauss co-ordinates are nothing 

more than an association of two sets of numbers with the 

points of the surface considered, of such a nature that numerical 

values differing very slightly from each other are associated with 

neighbouring points “in space.” 

So far, these considerations hold for a continuum of two 
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dimensions. But the Gaussian method can be applied also to a 

continuum of three, four or more dimensions. If, for instance, a 

continuum of four dimensions be supposed available, we may 

represent it in the following way. With every point of the con-

tinuum we associate arbitrarily four numbers, x
1
, x

2
, x

3
, x

4
, 

which are known as “co-ordinates.” Adjacent points correspond 

to adjacent values of the co-ordinates. If a distance ds is associ-

ated with the adjacent points P and P�, this distance being mea-

surable and well-defined from a physical point of view, then the 

following formula holds: 

2ds2 � g
11

dx
1 

dx
1
dx

2
. . . .  � g

44
dx

4
, 2 � 2g

12

where the magnitudes g
11

, etc., have values which vary with the 

position in the continuum. Only when the continuum is a Eu-

clidean one is it possible to associate the co-ordinates x
1

. . . x
4 

with the points of the continuum so that we have simply 

2ds2 � dx
1
2 � dx

2
2 � dx

3
2 � dx

4
. 

In this case relations hold in the four-dimensional continuum 

which are analogous to those holding in our three-dimensional 

measurements. 

However, the Gauss treatment for ds2 which we have given 

above is not always possible. It is only possible when suffi-

ciently small regions of the continuum under consideration may 

be regarded as Euclidean continua. For example, this obviously 

holds in the case of the marble slab of the table and local varia-

tion of temperature. The temperature is practically constant for 

a small part of the slab, and thus the geometrical behaviour of 

the rods is almost as it ought to be according to the rules of Eu-

clidean geometry. Hence the imperfections of the construction 

of squares in the previous section do not show themselves clearly 

until this construction is extended over a considerable portion 

of the surface of the table. 

We can sum this up as follows: Gauss invented a method for 

the mathematical treatment of continua in general, in which 

“size-relations” (“distances” between neighbouring points) are 
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defined. To every point of a continuum are assigned as many 

numbers (Gaussian co-ordinates) as the continuum has dimen-

sions. This is done in such a way, that only one meaning can be 

attached to the assignment, and that numbers (Gaussian co-

ordinates) which differ by an indefinitely small amount are as-

signed to adjacent points. The Gaussian co-ordinate system is 

a logical generalisation of the Cartesian co-ordinate system. It 

is also applicable to non-Euclidean continua, but only when, 

with respect to the defined “size” or “distance,” small parts of 

the continuum under consideration behave more nearly like a 

Euclidean system, the smaller the part of the continuum under 

our notice. 



twenty-six 
The Space-Time Continuum of the Special 

Theory of Relativity Considered 
as a Euclidean Continuum 

We are now in a position to formulate more exactly the idea of 

Minkowski, which was only vaguely indicated in Section 17. In 

accordance with the special theory of relativity, certain co-

ordinate systems are given preference for the description of the 

four-dimensional, space-time continuum. We called these 

“Galileian co-ordinate systems.” For these systems, the four co-

ordinates x, y, z, t, which determine an event or—in other 

words—a point of the four-dimensional continuum, are defined 

physically in a simple manner, as set forth in detail in the first 

part of this book. For the transition from one Galileian system 

to another, which is moving uniformly with reference to the 

first, the equations of the Lorentz transformation are valid. 

These last form the basis for the derivation of deductions from 

the special theory of relativity, and in themselves they are noth-

ing more than the expression of the universal validity of the law 

of transmission of light for all Galileian systems of reference. 

Minkowski found that the Lorentz transformations satisfy 

the following simple conditions. Let us consider two neighbour-

ing events, the relative position of which in the four-dimensional 

continuum is given with respect to a Galileian reference-body K 

by the space co-ordinate differences dx, dy, dz and the time-

difference dt. With reference to a second Galileian system we 

shall suppose that the corresponding differences for these two 

events are dx�, dy�, dz�, dt�. Then these magnitudes always fulfil 

the condition1 

1 Cf. Appendices 1 and 2. The relations which are derived there for the co-

ordinates themselves are valid also for co-ordinate differences, and thus also 

for co-ordinate differentials (indefinitely small differences). 
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dx2 � dy2 � dz2 � c2dt2 � dx�2 � dy�2 � dz�2 � c2dt�2. 

The validity of the Lorentz transformation follows from this 

condition. We can express this as follows: The magnitude 

ds2 � dx2 � dy2 � dz2 � c2dt2, 

which belongs to two adjacent points of the four-dimensional 

space-time continuum, has the same value for all selected 

(Galileian) reference-bodies. If we replace x, y, z ��1� ct, by 

x
1
, x

2
, x

3
, x

4
, we also obtain the result that 

2ds2 � dx
1
2 � dx

2
2 � dx

3
2 � dx

4 

is independent of the choice of the body of reference. We call 

the magnitude ds the “distance” apart of the two events or 

four-dimensional points. 

Thus, if we choose as time-variable the imaginary variable 

��1� ct instead of the real quantity t, we can regard the space-

time continuum—in accordance with the special theory of 

relativity—as a “Euclidean” four-dimensional continuum, a re-

sult which follows from the considerations of the preceding 

section. 



twenty-seven 
The Space-Time Continuum 

of the General Theory of Relativity 
Is Not a Euclidean Continuum 

In the first part of this book we were able to make use of space-

time co-ordinates which allowed of a simple and direct physical 

interpretation, and which, according to Section 26, can be re-

garded as four-dimensional Cartesian co-ordinates. This was 

possible on the basis of the law of the constancy of the velocity 

of light. But according to Section 21, the general theory of rela-

tivity cannot retain this law. On the contrary, we arrived at the 

result that according to this latter theory the velocity of light 

must always depend on the coordinates when a gravitational 

field is present. In connection with a specific illustration in Sec-

tion 23, we found that the presence of a gravitational field in-

validates the definition of the co-ordinates and the time, which 

led us to our objective in the special theory of relativity. 

In view of the results of these considerations we are led to the 

conviction that, according to the general principle of relativity, 

the space-time continuum cannot be regarded as a Euclidean one, 

but that here we have the general case, corresponding to the mar-

ble slab with local variations of temperature, and with which we 

made acquaintance as an example of a two-dimensional contin-

uum. Just as it was there impossible to construct a Cartesian co-

ordinate system from equal rods, so here it is impossible to build 

up a system (reference-body) from rigid bodies and clocks, 

which shall be of such a nature that measuring-rods and clocks, 

arranged rigidly with respect to one another, shall indicate posi-

tion and time directly. Such was the essence of the difficulty with 

which we were confronted in Section 23. 

But the considerations of Sections 25 and 26 show us the 

way to surmount this difficulty. We refer the four-dimensional 
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x

space-time continuum in an arbitrary manner to Gauss co-

ordinates. We assign to every point of the continuum (event) 

four numbers, x
1
, x

2
, x

3
, x

4 
(co-ordinates), which have not the 

least direct physical significance, but only serve the purpose of 

numbering the points of the continuum in a definite but arbi-

trary manner. This arrangement does not even need to be of such 

a kind that we must regard x
1
, x

2
, x

3 
as “space” co-ordinates and 

4 
as a “time” co-ordinate. 

The reader may think that such a description of the world 

would be quite inadequate. What does it mean to assign to an 

event the particular co-ordinates x
1
, x

2
, x

3
, x

4
, if in themselves 

these co-ordinates have no significance? More careful consider-

ation shows, however, that this anxiety is unfounded. Let us 

consider, for instance, a material point with any kind of mo-

tion. If this point had only a momentary existence without 

duration, then it would be described in space-time by a single 

system of values x
1
, x

2
, x

3
, x

4
. Thus its permanent existence 

must be characterised by an infinitely large number of such sys-

tems of values, the co-ordinate values of which are so close to-

gether as to give continuity; corresponding to the material point, 

we thus have a (uni-dimensional) line in the four-dimensional 

continuum. In the same way, any such lines in our continuum 

correspond to many points in motion. The only statements hav-

ing regard to these points which can claim a physical existence 

are in reality the statements about their encounters. In our math-

ematical treatment, such an encounter is expressed in the fact 

that the two lines which represent the motions of the points in 

question have a particular system of co-ordinate values, x
1
, x

2
, 

x
3
, x

4
, in common. After mature consideration the reader will 

doubtless admit that in reality such encounters constitute the 

only actual evidence of a time-space nature with which we meet 

in physical statements. 

When we were describing the motion of a material point rel-

ative to a body of reference, we stated nothing more than the 

encounters of this point with particular points of the reference-

body. We can also determine the corresponding values of the 

time by the observation of encounters of the body with clocks, 

in conjunction with the observation of the encounter of the 
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hands of clocks with particular points on the dials. It is just the 

same in the case of space-measurements by means of measur-

ing-rods, as a little consideration will show. 

The following statements hold generally: Every physical de-

scription resolves itself into a number of statements, each of 

which refers to the space-time coincidence of two events A and 

B. In terms of Gaussian co-ordinates, every such statement is 

expressed by the agreement of their four co-ordinates x
1
, x

2
, 

x
3
, x

4
. Thus in reality, the description of the time-space contin-

uum by means of Gauss co-ordinates completely replaces the 

description with the aid of a body of reference, without suffer-

ing from the defects of the latter mode of description; it is not 

tied down to the Euclidean character of the continuum which 

has to be represented. 



twenty-eight 
Exact Formulation of the General 

Principle of Relativity 

We are now in a position to replace the provisional formulation 

of the general principle of relativity given in Section 18 by an 

exact formulation. The form there used, “All bodies of refer-

ence K, K�, etc., are equivalent for the description of natural 

phenomena (formulation of the general laws of nature), what-

ever may be their state of motion,” cannot be maintained, be-

cause the use of rigid reference-bodies, in the sense of the method 

followed in the special theory of relativity, is in general not pos-

sible in space-time description. The Gauss co-ordinate system 

has to take the place of the body of reference. The following 

statement corresponds to the fundamental idea of the general 

principle of relativity: “All Gaussian co-ordinate systems are 

essentially equivalent for the formulation of the general laws of 

nature.” 

We can state this general principle of relativity in still another 

form, which renders it yet more clearly intelligible than it is 

when in the form of the natural extension of the special princi-

ple of relativity. According to the special theory of relativity, 

the equations which express the general laws of nature pass 

over into equations of the same form when, by making use of 

the Lorentz transformation, we replace the space-time variables 

x, y, z, t, of a (Galileian) reference-body K by the space-time 

variables x�, y�, z�, t�, of a new reference-body K�. According to 

the general theory of relativity, on the other hand, by applica-

tion of arbitrary substitutions of the Gauss variables x
1
, x

2
, x

3
, 

x
4
, the equations must pass over into equations of the same 

form; for every transformation (not only the Lorentz transfor-
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mation) corresponds to the transition of one Gauss co-ordinate 

system into another. 

If we desire to adhere to our “old-time” three-dimensional 

view of things, then we can characterise the development which 

is being undergone by the fundamental idea of the general the-

ory of relativity as follows: The special theory of relativity has 

reference to Galileian domains, i.e. to those in which no gravi-

tational field exists. In this connection a Galileian reference-

body serves as body of reference, i.e. a rigid body the state of 

motion of which is so chosen that the Galileian law of the uni-

form rectilinear motion of “isolated” material points holds rel-

atively to it. 

Certain considerations suggest that we should refer the same 

Galileian domains to non-Galileian reference-bodies also. A 

gravitational field of a special kind is then present with respect 

to these bodies (cf. Sections 20 and 23). 

In gravitational fields there are no such things as rigid bodies 

with Euclidean properties; thus the fictitious rigid body of ref-

erence is of no avail in the general theory of relativity. The mo-

tion of clocks is also influenced by gravitational fields, and in 

such a way that a physical definition of time which is made di-

rectly with the aid of clocks has by no means the same degree 

of plausibility as in the special theory of relativity. 

For this reason non-rigid reference-bodies are used, which 

are as a whole not only moving in any way whatsoever, but 

which also suffer alterations in form ad lib. during their mo-

tion. Clocks, for which the law of motion is of any kind, how-

ever irregular, serve for the definition of time. We have to 

imagine each of these clocks fixed at a point on the non-rigid 

reference-body. These clocks satisfy only the one condition, 

that the “readings” which are observed simultaneously on adja-

cent clocks (in space) differ from each other by an indefinitely 

small amount. This non-rigid reference-body, which might ap-

propriately be termed a “reference-mollusc,” is in the main 

equivalent to a Gaussian four-dimensional co-ordinate system 

chosen arbitrarily. That which gives the “mollusc” a certain 

comprehensibility as compared with the Gauss co-ordinate 
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system is the (really unjustified) formal retention of the separate 

existence of the space co-ordinates as opposed to the time co-

ordinate. Every point on the mollusc is treated as a space-point, 

and every material point which is at rest relatively to it as at 

rest, so long as the mollusc is considered as reference-body. The 

general principle of relativity requires that all these molluscs 

can be used as reference-bodies with equal right and equal suc-

cess in the formulation of the general laws of nature; the laws 

themselves must be quite independent of the choice of mollusc. 

The great power possessed by the general principle of relativ-

ity lies in the comprehensive limitation which is imposed on the 

laws of nature in consequence of what we have seen above. 



twenty-nine 
The Solution of the Problem of Gravitation 

on the Basis of the General Principle 
of Relativity 

If the reader has followed all our previous considerations, he 

will have no further difficulty in understanding the methods 

leading to the solution of the problem of gravitation. 

We start off from a consideration of a Galileian domain, i.e. 

a domain in which there is no gravitational field relative to the 

Galileian reference-body K. The behaviour of measuring-rods 

and clocks with reference to K is known from the special theory 

of relativity, likewise the behaviour of “isolated” material points; 

the latter move uniformly and in straight lines. 

Now let us refer this domain to a random Gauss co-ordinate 

system or to a “mollusc” as reference-body K�. Then with re-

spect to K� there is a gravitational field G (of a particular kind). 

We learn the behaviour of measuring-rods and clocks and also 

of freely-moving material points with reference to K� simply by 

mathematical transformation. We interpret this behaviour as 

the behaviour of measuring-rods, clocks and material points 

under the influence of the gravitational field G. Hereupon we 

introduce a hypothesis: that the influence of the gravitational 

field on measuring-rods, clocks and freely-moving material points 

continues to take place according to the same laws, even in the 

case where the prevailing gravitational field is not derivable 

from the Galileian special case, simply by means of a transfor-

mation of co-ordinates. 

The next step is to investigate the space-time behaviour of the 

gravitational field G, which was derived from the Galileian spe-

cial case simply by transformation of the co-ordinates. This be-

haviour is formulated in a law, which is always valid, no matter 
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how the reference-body (mollusc) used in the description may 

be chosen. 

This law is not yet the general law of the gravitational field, 

since the gravitational field under consideration is of a special 

kind. In order to find out the general law-of-field of gravitation 

we still require to obtain a generalisation of the law as found 

above. This can be obtained without caprice, however, by tak-

ing into consideration the following demands: 

(a) The required generalisation must likewise satisfy the gen-

eral postulate of relativity. 

(b) If there is any matter in the domain under consideration, 

only its inertial mass, and thus according to Section 15 only 

its energy is of importance for its effect in exciting a field. 

(c) Gravitational field and matter together must satisfy the 
law of the conservation of energy (and of impulse). 
Finally, the general principle of relativity permits us to deter -

mine the influence of the gravitational field on the course of all 

those processes which take place according to known laws 

when a gravitational field is absent, i.e. which have already 

been fitted into the frame of the special theory of relativity. In 

this connection we proceed in principle according to the method 

which has already been explained for measuring-rods, clocks and 

freely-moving material points. 

The theory of gravitation derived in this way from the gen-

eral postulate of relativity excels not only in its beauty; nor in 

removing the defect attaching to classical mechanics which was 

brought to light in Section 21; nor in interpreting the empirical 

law of the equality of inertial and gravitational mass; but it has 

also already explained a result of observation in astronomy, 

against which classical mechanics is powerless. 

If we confine the application of the theory to the case where 

the gravitational fields can be regarded as being weak, and in 

which all masses move with respect to the co-ordinate system 

with velocities which are small compared with the velocity of 

light, we then obtain as a first approximation the Newtonian 

theory. Thus the latter theory is obtained here without any par-

ticular assumption, whereas Newton had to introduce the hy-

pothesis that the force of attraction between mutually attracting 



93 solution of gravitation 

material points is inversely proportional to the square of the 

distance between them. If we increase the accuracy of the calcu-

lation, deviations from the theory of Newton make their appear-

ance, practically all of which must nevertheless escape the test of 

observation owing to their smallness. 

We must draw attention here to one of these deviations. Ac-

cording to Newton’s theory, a planet moves round the sun in an 

ellipse, which would permanently maintain its position with re-

spect to the fixed stars, if we could disregard the motion of the 

fixed stars themselves and the action of the other planets under 

consideration. Thus, if we correct the observed motion of the 

planets for these two influences, and if Newton’s theory be 

strictly correct, we ought to obtain for the orbit of the planet an 

ellipse, which is fixed with reference to the fixed stars. This de-

duction, which can be tested with great accuracy, has been con-

firmed for all the planets save one, with the precision that is 

capable of being obtained by the delicacy of observation attain-

able at the present time. The sole exception is Mercury, the 

planet which lies nearest the sun. Since the time of Leverrier, it 

has been known that the ellipse corresponding to the orbit 

of Mercury, after it has been corrected for the influences men-

tioned above, is not stationary with respect to the fixed stars, 

but that it rotates exceedingly slowly in the plane of the orbit 

and in the sense of the orbital motion. The value obtained for 

this rotary movement of the orbital ellipse was 43 seconds of 

arc per century, an amount ensured to be correct to within a 

few seconds of arc. This effect can be explained by means of 

classical mechanics only on the assumption of hypotheses 

which have little probability, and which were devised solely for 

this purpose. 

On the basis of the general theory of relativity, it is found that 

the ellipse of every planet round the sun must necessarily rotate 

in the manner indicated above; that for all the planets, with the 

exception of Mercury, this rotation is too small to be detected 

with the delicacy of observation possible at the present time; 

but that in the case of Mercury it must amount to 43 seconds 

of arc per century, a result which is strictly in agreement with 

observation. 
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Apart from this one, it has hitherto been possible to make 

only two deductions from the theory which admit of being 

tested by observation, to wit, the curvature of light rays by the 

gravitational field of the sun,1 and a displacement of the spec-

tral lines of light reaching us from large stars, as compared with 

the corresponding lines for light produced in an analogous 

manner terrestrially (i.e. by the same kind of atom). I do not 

doubt that these deductions from the theory will be confirmed 

also. 

1 First observed by Eddington and others in 1919. (Cf. Appendix 3) 
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thirty 
Cosmological Difficulties 

of Newton’s Theory 

Apart from the difficulty discussed in Section 21, there is a sec-

ond fundamental difficulty attending classical celestial mechan-

ics, which, to the best of my knowledge, was first discussed in 

detail by the astronomer Seeliger. If we ponder over the ques-

tions as to how the universe, considered as a whole, is to be re-

garded, the first answer that suggests itself to us is surely this: As 

regards space (and time) the universe is infinite. There are stars 

everywhere, so that the density of matter, although very variable 

in detail, is nevertheless on the average everywhere the same. In 

other words: However far we might travel through space, we 

should find everywhere an attenuated swarm of fixed stars of 

approximately the same kind and density. 

This view is not in harmony with the theory of Newton. The 

latter theory rather requires that the universe should have a kind 

of centre in which the density of the stars is a maximum, and 

that as we proceed outwards from this centre the group-density 

of the stars should diminish, until finally, at great distances, it is 

succeeded by an infinite region of emptiness. The stellar uni-

verse ought to be a finite island in the infinite ocean of space.1 

1 Proof—According to the theory of Newton, the number of “lines of force” 

which come from infinity and terminate in a mass m is proportional to the 

mass m. If, on the average, the mass density p
0 

is constant throughout the uni-

verse, then a sphere of volume V will enclose the average mass p
0
V. Thus the 

number of lines of force passing through the surface F of the sphere into its 

interior is proportional to p
0
V. For unit area of the surface of the sphere the 

number of lines of force which enters the sphere is thus proportional to p
0

�
F

V
� or 

to p
0
R. Hence the intensity of the field at the surface would ultimately become 

infinite with increasing radius R of the sphere, which is impossible. 
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This conception is in itself not very satisfactory. It is still less 

satisfactory because it leads to the result that the light emitted 

by the stars and also individual stars of the stellar system are 

perpetually passing out into infinite space, never to return, and 

without ever again coming into interaction with other objects 

of nature. Such a finite material universe would be destined to 

become gradually but systematically impoverished. 

In order to escape this dilemma, Seeliger suggested a modifi-

cation of Newton’s law, in which he assumes that for great dis-

tances the force of attraction between two masses diminishes 

more rapidly than would result from the inverse square law. In 

this way it is possible for the mean density of matter to be con-

stant everywhere, even to infinity, without infinitely large gravi-

tational fields being produced. We thus free ourselves from the 

distasteful conception that the material universe ought to pos-

sess something of the nature of a centre. Of course we purchase 

our emancipation from the fundamental difficulties mentioned, 

at the cost of a modification and complication of Newton’s law 

which has neither empirical nor theoretical foundation. We can 

imagine innumerable laws which would serve the same purpose, 

without our being able to state a reason why one of them is to 

be preferred to the others; for any one of these laws would be 

founded just as little on more general theoretical principles as is 

the law of Newton. 



thirty-one 
The Possibility of a “Finite” and Yet 

“Unbounded” Universe 

But speculations on the structure of the universe also move in 

quite another direction. The development of non-Euclidean 

geometry led to the recognition of the fact, that we can cast 

doubt on the infiniteness of our space without coming into con-

flict with the laws of thought or with experience (Riemann, 

Helmholtz). These questions have already been treated in detail 

and with unsurpassable lucidity by Helmholtz and Poincaré, 

whereas I can only touch on them briefly here. 

In the first place, we imagine an existence in two-dimensional 

space. Flat beings with flat implements, and in particular flat 

rigid measuring-rods, are free to move in a plane. For them 

nothing exists outside of this plane: that which they observe 

to happen to themselves and to their flat “things” is the all-

inclusive reality of their plane. In particular, the constructions 

of plane Euclidean geometry can be carried out by means of the 

rods, e.g. the lattice construction, considered in Section 24. 

In contrast to ours, the universe of these beings is two-

dimensional; but, like ours, it extends to infinity. In their uni-

verse there is room for an infinite number of identical squares 

made up of rods, i.e. its volume (surface) is infinite. If these be-

ings say their universe is “plane,” there is sense in the statement, 

because they mean that they can perform the constructions of 

plane Euclidean geometry with their rods. In this connection 

the individual rods always represent the same distance, inde-

pendently of their position. 

Let us consider now a second two-dimensional existence, but 

this time on a spherical surface instead of on a plane. The flat 

beings with their measuring-rods and other objects fit exactly 
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on this surface and they are unable to leave it. Their whole uni-

verse of observation extends exclusively over the surface of the 

sphere. Are these beings able to regard the geometry of their 

universe as being plane geometry and their rods withal as the 

realisation of “distance”? They cannot do this. For if they at-

tempt to realise a straight line, they will obtain a curve, which 

we “three-dimensional beings” designate as a great circle, i.e. a 

self-contained line of definite finite length, which can be mea-

sured up by means of a measuring-rod. Similarly, this universe 

has a finite area that can be compared with the area of a square 

constructed with rods. The great charm resulting from this 

consideration lies in the recognition of the fact that the universe 

of these beings is finite and yet has no limits. 

But the spherical-surface beings do not need to go on a 

world-tour in order to perceive that they are not living in a Eu-

clidean universe. They can convince themselves of this on every 

part of their “world,” provided they do not use too small a 

piece of it. Starting from a point, they draw “straight lines” 

(arcs of circles as judged in three-dimensional space) of equal 

length in all directions. They will call the line joining the free 

ends of these lines a “circle.” For a plane surface, the ratio of 

the circumference of a circle to its diameter, both lengths being 

measured with the same rod, is, according to Euclidean geome-

try of the plane, equal to a constant value �, which is indepen-

dent of the diameter of the circle. On their spherical surface our 

flat beings would find for this ratio the value 

r
sin ���R 

v

R 

i.e. a smaller value than �, the difference being the more con-

siderable, the greater is the radius of the circle in comparison 

with the radius R of the “world-sphere.” By means of this rela-

tion the spherical beings can determine the radius of their uni-

verse (“world”), even when only a relatively small part of their 

world-sphere is available for their measurements. But if this 

part is very small indeed, they will no longer be able to demon-
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strate that they are on a spherical “world” and not on a Euclid-

ean plane, for a small part of a spherical surface differs only 

slightly from a piece of a plane of the same size. 

Thus if the spherical-surface beings are living on a planet of 

which the solar system occupies only a negligibly small part 

of the spherical universe, they have no means of determining 

whether they are living in a finite or in an infinite universe, be-

cause the “piece of universe” to which they have access is in 

both cases practically plane, or Euclidean. It follows directly 

from this discussion, that for our sphere-beings the circumfer-

ence of a circle first increases with the radius until the “circum-

ference of the universe” is reached, and that it thence-forward 

gradually decreases to zero for still further increasing values 

of the radius. During this process the area of the circle contin-

ues to increase more and more, until finally it becomes equal to 

the total area of the whole “world-sphere.” 

Perhaps the reader will wonder why we have placed our “be-

ings” on a sphere rather than on another closed surface. But 

this choice has its justification in the fact that, of all closed sur-

faces, the sphere is unique in possessing the property that all 

points on it are equivalent. I admit that the ratio of the circum-

ference c of circle to its radius r depends on r, but for a given 

value of r it is the same for all points of the “world-sphere”; in 

other words, the “world-sphere” is a “surface of constant cur-

vature.” 

To this two-dimensional sphere-universe there is a three-

dimensional analogy, namely, the three-dimensional spherical 

space which was discovered by Riemann. Its points are likewise 

all equivalent. It possesses a finite volume, which is determined 

by its “radius” (2�2R3). Is it possible to imagine a spherical 

space? To imagine a space means nothing else than that we 

imagine an epitome of our “space” experience, i.e. of experi-

ence that we can have in the movement of “rigid” bodies. In 

this sense we can imagine a spherical space. 

Suppose we draw lines or stretch strings in all directions 

from a point, and mark off from each of these the distance � 
with a measuring-rod. All the free end-points of these lengths 

lie on a spherical surface. We can specially measure up the area 
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(F) of this surface by means of a square made up of measuring-

rods. If the universe is Euclidean, then F � 4��2; if it is spheri-

cal, then F is always less than 4��2. With increasing values of �, 

F increases from zero up to a maximum value which is deter-

mined by the “world-radius,” but for still further increasing 

values of �, the area gradually diminishes to zero. At first, the 

straight lines which radiate from the starting point diverge far-

ther and farther from one another, but later they approach each 

other, and finally they run together again at a “counter-point” to 

the starting point. Under such conditions they have traversed the 

whole spherical space. It is easily seen that the three-dimensional 

spherical space is quite analogous to the two-dimensional spheri-

cal surface. It is finite (i.e. of finite volume), and has no bounds. 

It may be mentioned that there is yet another kind of curved 

space: “elliptical space.” It can be regarded as a curved space in 

which the two “counter-points” are identical (indistinguishable 

from each other). An elliptical universe can thus be considered to 

some extent as a curved universe possessing central symmetry. 

It follows from what has been said, that closed spaces with-

out limits are conceivable. From amongst these, the spherical 

space (and the elliptical) excels in its simplicity, since all points 

on it are equivalent. As a result of this discussion, a most inter-

esting question arises for astronomers and physicists, and that 

is whether the universe in which we live is infinite, or whether it 

is finite in the manner of the spherical universe. Our experience is 

far from being sufficient to enable us to answer this question. 

But the general theory of relativity permits of our answering it 

with a moderate degree of certainty, and in this connection the 

difficulty mentioned in Section 30 finds its solution. 
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The Structure of Space According to 

the General Theory of Relativity 

According to the general theory of relativity, the geometrical 

properties of space are not independent, but they are determined 

by matter. Thus we can draw conclusions about the geometrical 

structure of the universe only if we base our considerations on 

the state of the matter as being something that is known. We 

know from experience that, for a suitably chosen co-ordinate sys-

tem, the velocities of the stars are small as compared with the 

velocity of transmission of light. We can thus as a rough approx-

imation arrive at a conclusion as to the nature of the universe as 

a whole, if we treat the matter as being at rest. 

We already know from our previous discussion that the be-

haviour of measuring-rods and clocks is influenced by gravita-

tional fields, i.e. by the distribution of matter. This in itself is 

sufficient to exclude the possibility of the exact validity of Eu-

clidean geometry in our universe. But it is conceivable that our 

universe differs only slightly from a Euclidean one, and this 

notion seems all the more probable, since calculations show 

that the metrics of surrounding space is influenced only to an 

exceedingly small extent by masses even of the magnitude of 

our sun. We might imagine that, as regards geometry, our uni-

verse behaves analogously to a surface which is irregularly 

curved in its individual parts, but which nowhere departs ap-

preciably from a plane: something like the rippled surface of 

a lake. Such a universe might fittingly be called a quasi-

Euclidean universe. As regards its space it would be infinite. 

But calculation shows that in a quasi-Euclidean universe the 

average density of matter would necessarily be nil. Thus such a 

universe could not be inhabited by matter everywhere; it would 
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present to us that unsatisfactory picture which we portrayed in 

Section 30. 

If we are to have in the universe an average density of matter 

which differs from zero, however small may be that difference, 

then the universe cannot be quasi-Euclidean. On the contrary, 

the results of calculation indicate that if matter be distributed 

uniformly, the universe would necessarily be spherical (or ellip-

tical). Since in reality the detailed distribution of matter is not 

uniform, the real universe will deviate in individual parts from 

the spherical, i.e. the universe will be quasi-spherical. But it will 

be necessarily finite. In fact, the theory supplies us with a simple 

connection1 between the space-expanse of the universe and the 

average density of matter in it. 

1 For the “radius” R of the universe we obtain the equation 

2
R2 � �� 

2
The use of the C.G.S. system in this equation gives ��� 108.1037; � is the aver-

age density of the matter and � is a constant connected with the Newtonian 

constant of gravitation. 



appendix one 
Simple Derivation 

of the Lorentz Transformation 

[Supplementary to Section 11] 

For the relative orientation of the co-ordinate systems indicated 

in Fig. 2, the x-axes of both systems permanently coincide. In 

the present case we can divide the problem into parts by con-

sidering first only events which are localised on the x-axis. Any 

such event is represented with respect to the co-ordinate system 

K by the abscissa x and the time t, and with respect to the sys-

tem K� by the abscissa x� and the time t�. We require to find x� 
and t� when x and t are given. 

A light-signal, which is proceeding along the positive axis of 

x, is transmitted according to the equation 

x � ct 

or 

x � ct � 0 . . . (1). 

Since the same light-signal has to be transmitted relative to K� 
with the velocity c, the propagation relative to the system K� 
will be represented by the analogous formula 

x� � ct� � 0 . . . (2). 

Those space-time points (events) which satisfy (1) must also sat-

isfy (2). Obviously this will be the case when the relation 

N(x� � ct�) � �(x � ct) . . . (3), 
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is fulfilled in general, where � indicates a constant; for, accord-

ing to (3), the disappearance of (x � ct) involves the disappear-

ance of (x� � ct�). 
If we apply quite similar considerations to light rays which 

are being transmitted along the negative x-axis, we obtain the 

condition 

(x� � ct�) � �(x � ct) . . . (4). 

By adding (or subtracting) equations (3) and (4), and intro-

ducing for convenience the constants a and b in place of the 

constants � and �, where 

a � ��
2 

and 

b � ��,
2 

we obtain the equations 

x� � ax � bct

ct� �act � bx� . . . (5). 

We should thus have the solution of our problem, if the con-

stants a and b were known. These result from the following 

discussion. 

For the origin of K� we have permanently x�� 0, and hence 

according to the first of the equations (5) 

bc 
x � ��t. 

a 

If we call v the velocity with which the origin of K� is moving 

relative to K, we then have 

bc 
v � �� . . . (6).

a 
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The same value v can be obtained from equations (5), if we 

calculate the velocity of another point of K� relative to K, or the 

velocity (directed towards the negative x-axis) of a point of K 

with respect to K�. In short, we can designate v as the relative 

velocity of the two systems. 

Furthermore, the principle of relativity teaches us that, as 

judged from K, the length of a unit measuring-rod which is at 

rest with reference to K� must be exactly the same as the length, 

as judged from K�, of a unit measuring-rod which is at rest rela-

tive to K. In order to see how the points of the x�-axis appear as 

viewed from K, we only require to take a “snapshot” of K� from 

K; this means that we have to insert a particular value of t (time 

of K), e.g. t � 0. For this value of t we then obtain from the first 

of the equations (5) 

x� � ax. 

Two points of the x�-axis which are separated by the distance 

�x� � 1 when measured in the K� system are thus separated in 

our instantaneous photograph by the distance 

1 
�x � �� . . . (7).

a 

But if the snapshot be taken from K�(t� � 0), and if we elimi-

nate t from the equations (5), taking into account the expres-

sion (6), we obtain 

2v 
x� � a�1 � �� x. 

c2 �
From this we conclude that two points of the x-axis sepa-

rated by the distance 1 (relative to K) will be represented on our 

snapshot by the distance 

2v 
�x� � a�1� �� .  .  . (7a).

c2 � 
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But from what has been said, the two snapshots must be 

identical; hence �x in (7) must be equal to �x� in (7a), so that 

we obtain 

1 
a2� �2 . . . (7b).

v
1��� 

c2 

The equations (6) and (7b) determine the constants a and b. 

By inserting the values of these constants in (5), we obtain the 

first and the fourth of the equations given in Section 11. 

x � vt
x� � � 

��2v�1� � 
c2 

. . . (8).v 
t � ��x �2c 

t� � � 

��2v�1� �
c2 

Thus we have obtained the Lorentz transformation for events 

on the x-axis. It satisfies the condition 

x�2 � c2t�2 � x2 � c2t2 .  .  . (8a). 

The extension of this result, to include events which take 

place outside the x-axis, is obtained by retaining equations (8) 

and supplementing them by the relations 

y� � y . . . (9). 
z� � z 

In this way we satisfy the postulate of the constancy of the ve-

locity of light in vacuo for rays of light of arbitrary directions, 

both for the system K and for the system K�. This may be 

shown in the following manner. 
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We suppose a light-signal sent out from the origin of K at the 

time t � 0. It will be propagated according to the equation 

�2 � z2r � �x2 � y�� ct, 

or, if we square this equation, according to the equation 

x2 � y2 � z2 � c2t2 � 0 . . . (10). 

It is required by the law of propagation of light, in conjunc-

tion with the postulate of relativity, that the transmission of the 

signal in question should take place—as judged from K�—in 

accordance with the corresponding formula 

r� � ct�, 

or, 

x�2 � y�2 � z�2 � c2t�2 � 0 .  .  .  (10a). 

In order that equation (10a) may be a consequence of equation 

(10), we must have 

x�2 � y�2 � z�2 � c2t�2 � �(x2 � y2 � z2 � c2t2) (11). 

Since equation (8a) must hold for points on the x-axis, we 

thus have � � 1. It is easily seen that the Lorentz transformation 

really satisfies equation (11) for � � 1; for (11) is a consequence 

of (8a) and (9), and hence also of (8) and (9). We have thus de-

rived the Lorentz transformation. 

The Lorentz transformation represented by (8) and (9) still re-

quires to be generalised. Obviously it is immaterial whether the 

axes of K� be chosen so that they are spatially parallel to those 

of K. It is also not essential that the velocity of translation of K� 
with respect to K should be in the direction of the x-axis. A sim-

ple consideration shows that we are able to construct the Lorentz 

transformation in this general sense from two kinds of transfor-

mations, viz. from Lorentz transformations in the special sense 
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and from purely spatial transformations, which corresponds to 

the replacement of the rectangular co-ordinate system by a new 

system with its axes pointing in other directions. 

Mathematically, we can characterise the generalised Lorentz 

transformation thus: 

It expresses x�, y�, z�, t�, in terms of linear homogeneous func-

tions of x, y, z, t, of such a kind that the relation 

x�2 � y�2 � z�2 � c2t�2 � x2 � y2 � z2 � c2t2 (11a) 

is satisfied identically. That is to say: If we substitute their ex-

pressions in x, y, z, t in place of x�, y�, z�, t�, on the left-hand 

side, then the left-hand side of (11a) agrees with the right-hand 

side. 



appendix two 
Minkowski’s Four-Dimensional 

Space (“World”) 

[Supplementary to Section 17] 

We can characterise the Lorentz transformation still more sim-

ply if we introduce the imaginary ��1�. ct in place of t, as 

time-variable. If, in accordance with this, we insert 

x

x

x

x
1 

� x 

2 
� y 

3 
� z 

4 
� ��1�. ct, 

and similarly for the accented system K�, then the condition 

which is identically satisfied by the transformation can be ex-

pressed thus: 

2x
1
�2 � x

2
�2 � x

3
�2 � x

4
�2 � x

1
2 � x

2
2 � x

3
2 � x

4 
(12). 

That is, by the afore-mentioned choice of “co-ordinates,” 

(11a) is transformed into this equation. 

We see from (12) that the imaginary time co-ordinate x
4 

en-

ters into the condition of transformation in exactly the same 

way as the space co-ordinates x
1
, x

2
, x

3
. It is due to this fact 

that, according to the theory of relativity, the “time” x
4 

enters 

into natural laws in the same form as the space co-ordinates 

x
1
, x

2
, x

3
. 

A four-dimensional continuum described by the “co-

ordinates” x
1
, x

2
, x

3
, x

4
, was called “world” by Minkowski, 

who also termed a point-event a “world-point.” From a “hap-

pening” in three-dimensional space, physics becomes, as it were, 

an “existence” in the four-dimensional “world.” 



112 relativity 

This four-dimensional “world” bears a close similarity to the 

three-dimensional “space” of (Euclidean) analytical geometry. 

If we introduce into the latter a new Cartesian co-ordinate sys-

tem (x
1
�, x

2
�, x

3
�) with the same origin, then x

1
�, x

2
�, x

3
�, are linear 

homogeneous functions of x
1
, x

2
, x

3
, which identically satisfy 

the equation 

2x
1
�2 � x

2
�2 � x

3
�2 � x

1
2 � x

2
2 � x

3
. 

The analogy with (12) is a complete one. We can regard 

Minkowski’s “world” in a formal manner as a four-dimensional 

Euclidean space (with imaginary time co-ordinate); the Lorentz 

transformation corresponds to a “rotation” of the co-ordinate 

system in the four-dimensional “world.” 



appendix three 
The Experimental Confirmation 

of the General Theory of Relativity 

From a systematic theoretical point of view, we may imagine 

the process of evolution of an empirical science to be a contin-

uous process of induction. Theories are evolved and are ex-

pressed in short compass as statements of a large number of 

individual observations in the form of empirical laws, from 

which the general laws can be ascertained by comparison. Re-

garded in this way, the development of a science bears some re-

semblance to the compilation of a classified catalogue. It is, as it 

were, a purely empirical enterprise. 

But this point of view by no means embraces the whole of the 

actual process; for it slurs over the important part played by in-

tuition and deductive thought in the development of an exact 

science. As soon as a science has emerged from its initial stages, 

theoretical advances are no longer achieved merely by a process 

of arrangement. Guided by empirical data, the investigator 

rather develops a system of thought which, in general, is built 

up logically from a small number of fundamental assumptions, 

the so-called axioms. We call such a system of thought a the-

ory. The theory finds the justification for its existence in the fact 

that it correlates a large number of single observations, and it is 

just here that the “truth” of the theory lies. 

Corresponding to the same complex of empirical data, there 

may be several theories, which differ from one another to a 

considerable extent. But as regards the deductions from the the-

ories which are capable of being tested, the agreement between 

the theories may be so complete, that it becomes difficult to find 

any deductions in which the two theories differ from each 

other. As an example, a case of general interest is available in 
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the province of biology, in the Darwinian theory of the develop-

ment of species by selection in the struggle for existence, and in 

the theory of development which is based on the hypothesis 

of the hereditary transmission of acquired characters. 

We have another instance of far-reaching agreement be-

tween the deductions from two theories in Newtonian me-

chanics on the one hand, and the general theory of relativity on 

the other. This agreement goes so far, that up to the present we 

have been able to find only a few deductions from the general 

theory of relativity which are capable of investigation, and 

to which the physics of pre-relativity days does not also lead, 

and this despite the profound difference in the fundamental as-

sumptions of the two theories. In what follows, we shall again 

consider these important deductions, and we shall also discuss 

the empirical evidence appertaining to them which has hitherto 

been obtained. 

(A) MOTION OF THE PERIHELION 

OF MERCURY 

According to Newtonian mechanics and Newton’s law of grav-

itation, a planet which is revolving round the sun would de-

scribe an ellipse round the latter, or, more correctly, round the 

common centre of gravity of the sun and the planet. In such a 

system, the sun, or the common centre of gravity, lies in one of 

the foci of the orbital ellipse in such a manner that, in the course 

of a planet-year, the distance sun-planet grows from a minimum 

to a maximum, and then decreases again to a minimum. If in-

stead of Newton’s law we insert a somewhat different law of at-

traction into the calculation, we find that, according to this new 

law, the motion would still take place in such a manner that the 

distance sun-planet exhibits periodic variations; but in this case 

the angle described by the line joining sun and planet during 

such a period (from perihelion—closest proximity to the sun— 

to perihelion) would differ from 360°. The line of the orbit 

would not then be a closed one but in the course of time it 
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would fill up an annular part of the orbital plane, viz. between 

the circle of least and the circle of greatest distance of the planet 

from the sun. 

According also to the general theory of relativity, which dif-

fers of course from the theory of Newton, a small variation 

from the Newton-Kepler motion of a planet in its orbit should 

take place, and in such a way, that the angle described by the 

radius sun-planet between one perihelion and the next should 

exceed that corresponding to one complete revolution by an 

amount given by 

3a224� 

T2c2(1 � e2)

(N.B.—One complete revolution corresponds to the angle 2� 
in the absolute angular measure customary in physics, and the 

above expression gives the amount by which the radius sun-

planet exceeds this angle during the interval between one peri-

helion and the next.) In this expression a represents the major 

semi-axis of the ellipse, e its eccentricity, c the velocity of light, 

and T the period of revolution of the planet. Our result may 

also be stated as follows: According to the general theory of 

relativity, the major axis of the ellipse rotates round the sun in 

the same sense as the orbital motion of the planet. Theory re-

quires that this rotation should amount to 43 seconds of arc per 

century for the planet Mercury, but for the other planets of our 

solar system its magnitude should be so small that it would nec-

essarily escape detection.1 

In point of fact, astronomers have found that the theory of 

Newton does not suffice to calculate the observed motion of 

Mercury with an exactness corresponding to that of the deli-

cacy of observation attainable at the present time. After taking 

account of all the disturbing influences exerted on Mercury by 

the remaining planets, it was found (Leverrier—1859—and 

Newcomb—1895) that an unexplained perihelial movement of 

the orbit of Mercury remained over, the amount of which does 

1 Especially since the next planet Venus has an orbit that is almost an exact cir-

cle, which makes it more difficult to locate the perihelion with precision. 
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not differ sensibly from the above-mentioned �43 seconds of 

arc per century. The uncertainty of the empirical result amounts 

to a few seconds only. 

(B) DEFLECTION OF LIGHT BY

A GRAVITATIONAL FIELD 

In Section 12 it has been already mentioned that according to 

the general theory of relativity, a ray of light will experience a 

curvature of its path when passing through a gravitational field, 

this curvature being similar to that experienced by the path of a 

body which is projected through a gravitational field. As a re-

sult of this theory, we should expect that a ray of light which is 

passing close to a heavenly body would be deviated towards the 

latter. For a ray of light which passes the sun at a distance of � 
sun-radii from its centre, the angle of deflection (a) should 

amount to 

1.7 seco ds of arc
a ���. 

It may be added that, according to the theory, half of this de-

flection is produced by the Newtonian field of attraction of the 

sun, and the other half by the geometrical modification (“cur-

vature”) of space caused by the sun. 

This result admits of an experimental test by means of the 

photographic registration of stars during a total eclipse of the 

sun. The only reason why we must wait for a total eclipse is be-

cause at every other time the atmosphere is so strongly illumi-

nated by the light from the sun that the stars situated near the 

sun’s disc are invisible. The predicted effect can be seen clearly 

from the accompanying diagram. If the sun (S) were not present, 

a star which is practically infinitely distant would be seen in the 

direction D
1
, as observed from the earth. But as a consequence 

of the deflection of light from the star by the sun, the star will 

be seen in the direction D
2
, i.e. at a somewhat greater distance 

from the centre of the sun that corresponds to its real position. 
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D2D1 

S 

� 

D1 

F 

Fig. 5 

In practice, the question is tested in the following way. The 

stars in the neighbourhood of the sun are photographed during a 

solar eclipse. In addition, a second photograph of the same stars 

is taken when the sun is situated at another position in the sky, 

i.e. a few months earlier or later. As compared with the standard 

photograph, the positions of the stars on the eclipse-photograph 

ought to appear displaced radially outwards (away from the cen-

tre of the sun) by an amount corresponding to the angle a. 

We are indebted to the Royal Society and to the Royal Astro-

nomical Society for the investigation of this important deduc-

tion. Undaunted by the war and by difficulties of both a material 

and a psychological nature aroused by the war, these societies 

equipped two expeditions—to Sobral (Brazil), and to the island 

of Principe (West Africa)—and sent several of Britain’s most 

celebrated astronomers (Eddington, Cottingham, Crommelin, 

Davidson), in order to obtain photographs of the solar eclipse 

of 29th May, 1919. The relative discrepancies to be expected 

between the stellar photographs obtained during the eclipse and 

the comparison photographs amounted to a few hundredths of 

a millimetre only. Thus great accuracy was necessary in making 

the adjustments required for the taking of the photographs, and 

in their subsequent measurement. 
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The results of the measurements confirmed the theory in a 

thoroughly satisfactory manner. The rectangular components of 

the observed and of the calculated deviations of the stars (in 

seconds of arc) are set forth in the following table of results: 

First Co-ordinate. Second Co-ordinate. 

Number of the 
Star. Observed. Calculated. Observed. Calculated. 

11 . . �0.19 �0.22 �0.16 �0.02 
5 .  .  �0.29 �0.31 �0.46 �0.43 
4 .  .  �0.11 �0.10 �0.83 �0.74 
3 .  .  �0.20 �0.12 �1.00 �0.87 
6 .  .  �0.10 �0.04 �0.57 �0.40 

10 . . �0.08 �0.09 �0.35 �0.32 
2 .  .  �0.95 �0.85 �0.27 �0.09 

(C) DISPLACEMENT OF SPECTRAL LINES

TOWARDS THE RED 

In Section 23 it has been shown that in a system K� which is in 

rotation with regard to a Galileian system K, clocks of identical 

construction, and which are considered at rest with respect to 

the rotating reference-body, go at rates which are dependent on 

the positions of the clocks. We shall now examine this depend-

ence quantitatively. A clock, which is situated at a distance � 
from the centre of the disc, has a velocity relative to K which is 

given by 

v � ��  

where � represents the angular velocity of rotation of the disc 

K� with respect to K. If 	
0 

represents the number of ticks of the 

clock per unit time (“rate” of the clock) relative to K when the 

clock is at rest, then the “rate” of the clock (	) when it is mov-

ing relative to K with a velocity v, but at rest with respect to the 

disc, will, in accordance with Section 12, be given by 
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v2 
	 � 	

0�1� ���, 
c2 

or with sufficient accuracy by 

2

� 1 v

c2 �	 � 	
0

1� �� �� .
2

This expression may also be stated in the following form: 

� 1 �2�2 

	 � 	
0

1� �� ���. c2 2 

If we represent the difference of potential of the centrifugal 

force between the position of the clock and the centre of the 

disc by �, i.e. the work, considered negatively, which must be 

performed on the unit of mass against the centrifugal force in 

order to transport it from the position of the clock on the rotat-

ing disc to the centre of the disc, then we have 

�2�2 

��� ��.
2 

From this it follows that 

	 � 	
0

1 � �� .
2� c 

In the first place, we see from this expression that two clocks of 

identical construction will go at different rates when situated at 

different distances from the centre of the disc. This result is also 

valid from the standpoint of an observer who is rotating with 

the disc. 

Now, as judged from the disc, the latter is in a gravitational 

field of potential �, hence the result we have obtained will hold 

quite generally for gravitational fields. Furthermore, we can re-

gard an atom which is emitting spectral lines as a clock, so that 

the following statement will hold: 

An atom absorbs or emits light of a frequency which is de-

pendent on the potential of the gravitational field in which it is 

situated. 

The frequency of an atom situated on the surface of a heavenly 
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body will be somewhat less than the frequency of an atom of 

the same element which is situated in free space (or on the 
M

surface of a smaller celestial body). Now � � �K��, where K 

is Newton’s constant of gravitation, and M is the mass of the 

heavenly body. Thus a displacement towards the red ought to 

take place for spectral lines produced at the surface of stars as 

compared with the spectral lines of the same element produced at 

the surface of the earth, the amount of this displacement being 

	
0�	 K M

�� � �� ��. 
	

0 
c2 � 

For the sun, the displacement towards the red predicted by the-

ory amounts to about two millionths of the wave-length. A trust-

worthy calculation is not possible in the case of the stars, because 

in general neither the mass M nor the radius � are known. 

It is an open question whether or not this effect exists, and 

at the present time (1920) astronomers are working with great 

zeal towards the solution. Owing to the smallness of the effect 

in the case of the sun, it is difficult to form an opinion as to its 

existence. Whereas Grebe and Bachem (Bonn), as a result of 

their own measurements and those of Evershed and Schwarz-

schild on the cyanogen bands, have placed the existence of the 

effect almost beyond doubt, other investigators, particularly St. 

John, have been led to the opposite opinion in consequence of 

their measurements. 

Mean displacements of lines towards the less refrangible end 

of the spectrum are certainly revealed by statistical investiga-

tions of the fixed stars; but up to the present the examination 

of the available data does not allow of any definite decision be-

ing arrived at, as to whether or not these displacements are to 

be referred in reality to the effect of gravitation. The results of 

observation have been collected together, and discussed in de-

tail from the standpoint of the question which has been engag-

ing our attention here, in a paper by E. Freundlich entitled “Zur 

Prüfung der aligemeinen Relativitäts-Theorie” (Die Naturwis-

senschaften, 1919, No. 35, p. 520: Julius Springer, Berlin). 



121 appendix three:  the experimental confirmation 

At all events, a definite decision will be reached during the 

next few years. If the displacement of spectral lines towards the 

red by the gravitational potential does not exist, then the gen-

eral theory of relativity will be untenable. On the other hand, if 

the cause of the displacement of spectral lines be definitely 

traced to the gravitational potential, then the study of this dis-

placement will furnish us with important information as to the 

mass of the heavenly bodies. 
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